Skip to main content

Advertisement

Log in

Circadian variation in the electroretinogram and the presence of central melatonin

  • Original research article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The light/dark cycle is the most important circadian clock synchronizer for mammals and humans. Circadian rhythms of dopamine and melatonin production in the retina have been reported to follow the light and dark cycle, but their impact on rod and cone functioning is not clear. The purpose of this study was to assess diurnal variations (morning vs. evening) in retinal function as measured with the photopic and scotopic electroretinogram (ERG). We also tried to correlate our results with the presence or absence of melatonin secretion in the saliva. Photopic and scotopic luminance–response functions were obtained in 29 participants at 11:00 (when melatonin should not be present) and 23:00 (when melatonin should be present). From the luminance–response function, Vmax, log K and slope parameters were derived. In scotopic condition, a significant increase of 6% in Vmax amplitude was observed in evening compared to morning (P = 0.03) along with a prolonged b-wave implicit time of 8% (P = 0.01) and an increase in rod sensitivity in evening compared to morning (P = 0.02). As expected, these changes in rod function were accompanied by a higher concentration of melatonin in saliva samples in the evening (P = 0.01). In photopic condition, only a prolonged a-wave implicit time of 5% was observed in evening when compared to morning (P = 0.02). Our findings suggest that the rod system is favored during night time, when circulating melatonin is present. Although statistically significant changes were observed, the day vs. night difference observed in the present study appears to be too small to impact significantly upon clinical assessment of retinal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ERG:

Electroretinogram

References

  1. Aschoff J (1981) Annual Rhythms in man. In: Aschoff J (ed) Biological rhythms. Plenum, New York, pp 475–487

    Google Scholar 

  2. Gwinner E (1986) Circannual rhythms. Spinger-Verlag, Berlin

    Google Scholar 

  3. Meijer J, Rietveld W (1989) Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev 69:671–707

    CAS  PubMed  Google Scholar 

  4. Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272:419–421

    Article  CAS  PubMed  Google Scholar 

  5. Dubocovich M, Lucas R, Takahashi J (1985) Light-dependent regulation of dopamine receptors in mammalian retina. Brain Res 335:321–325

    Article  CAS  PubMed  Google Scholar 

  6. Roseboom PH, Namboodiri MA, Zimonjic DB, Popescu NC, Rodriguez IR, Gastel JA, Klein DC (1998) Natural melatonin ‘knockdown’ in C57Bl/6J mice: rare mechanism truncates serotonin N-acetyltransferase. Brain Res Mol Brain Res 63(1):189–197

    Article  CAS  PubMed  Google Scholar 

  7. Bravo-Nuevo A, Walsh N, Stone J (2004) Photoreceptors degeneration and loss of retinal function in the C57Bl6–C2J mouse. Invest Ophtalmol Vis Sci 45(6):2005–2012

    Article  Google Scholar 

  8. Remé CE, Wirz-Justice A, Terman M (1991) The visual input stage of the mammalian circadian pacemaker system: is there a clock in the mammalian eye? J Biol Rhythms 6(1):5–29

    Article  PubMed  Google Scholar 

  9. Peters J, Cassone V (2005) Melatonin regulates circadian electroretinogram rhythms in a dose and time-dependent fashion. J Pineal Res 38:209–215

    Article  CAS  PubMed  Google Scholar 

  10. Miranda-Anaya M, Bartell P, Menaker M (2002) Circadian rhythm of iguana electroretinogram: the role of dopamine and melatonin. J Biol Rhythms 17:526–538

    Article  CAS  PubMed  Google Scholar 

  11. Tosini G, Fukuhara C (2002) The mammalian retina as a clock. Cell Tissue Res 309(1):119–126

    Article  CAS  PubMed  Google Scholar 

  12. Zawilska J (1994) The role of dopamine in the regulation of melatonin biosynthesis in vertebrate retina. Acta Neurobiol Exp 54(Suppl.):47–56

    Google Scholar 

  13. Tosini G, Dirden J (2000) Dopamine inhibits melatonin release in the mammalian retina: in vitro evidence. Neurosci Lett 286:119–122

    Article  CAS  PubMed  Google Scholar 

  14. Alarma-Estrany P, Hourani S (2007) Melatonin receptors in the eye: Location, second messengers and role in ocular physiology. Pharmacol Ther 113(3):507–522

    Article  CAS  PubMed  Google Scholar 

  15. Birch D, Berson E, Sandberg M (1984) Diurnal rhythm in the human rod ERG. Invest Ophthalmol Vis Sci 25:236–238

    CAS  PubMed  Google Scholar 

  16. Birch D, Sandberg M, Berson E (1986) Diurnal rhythm in the human rod ERG relationship to cyclic lighting. Invest Ophthalmol Vis Sci 27:268–270

    CAS  PubMed  Google Scholar 

  17. Hankins M, Jones R, Ruddock K (1998) Diurnal variation in the b-wave implicit time of the human electroretinogram. Vis Neurosci 15:55–67

    Article  CAS  PubMed  Google Scholar 

  18. Hankins M, Jones S, Jenkins A, Morland A (2001) Diurnal daylight phase affects the temporal properties of both the b-wave and d-wave of the human electroretinogram. Brain Res 889:339–343

    Article  CAS  PubMed  Google Scholar 

  19. Marcus M, Cabael L, Marmor M (2004) Are circadian variations in the electroretinogram evident on routine testing? Doc Ophthalmol 108:165–169

    Article  PubMed  Google Scholar 

  20. Nozaki S, Wakakura M, Ishikawa S (1981) Circadian rhythm of human electroretinogram. Jpn J Ophthalmol 27:346–352

    Google Scholar 

  21. Manglapus M, Iuvone M, Underwood H, Pierce M, Barlow R (1999) Dopamine mediates circadian rhythms of rod-cone dominance in the Japanese quail retina. J Neurosci 19:4132–4141

    CAS  PubMed  Google Scholar 

  22. Emser W, Dechoux R, Weiland M, Wirz-Justice A (1993) Melatonin decreases the amplitude of the b-wave of the human electroretinogram. Experientia 49:686–687

    Article  CAS  PubMed  Google Scholar 

  23. Hébert M, Rosolen S, Chalier C, et al. (2004) Comparing the effect of an oral administration of melatonin on the electroretinogram (ERG) of humans and dogs. Meeting abstract; Society for Research and Biological Rythms: Whisler, BC

  24. Zawilska J, Nowak J (1992) Regulatory mechanisms in melatonin biosynthesis in retina. Neurochem Int 20:23–36

    Article  CAS  PubMed  Google Scholar 

  25. Cahill G, Besharse J (1993) Circadian clock functions localized in Xenopus retinal photoreceptors. Neuron 10:573–577

    Article  CAS  PubMed  Google Scholar 

  26. Berharse J, Iuvone P (1983) Circadian clock in Xenopus eye controlling retinal serotonin N-acetyltransferase. Nature 305:133–135

    Article  Google Scholar 

  27. Rufiange M, Dumont M, Lachapelle P (2002) Correlating retinal function with melatonin secretion in subjects with an early or late circadian phase. Invest Ophthalmol Vis Sci 43:2491–2499

    PubMed  Google Scholar 

  28. Whiechmann AF (1986) Melatonin: parallel in pineal gland and retina. Exp Eye Res 42:507–527

    Article  Google Scholar 

  29. Voultsios A, Kennaway D, Dawson D (1997) Salivary melatonin as a circadian phase marker: validation and comparison to plasma melatonin. J Biol Rhythm. 12:466–599

    Google Scholar 

  30. Tosini G (2000) Melatonin circadian rhythm in the retina of mammals. Chronobiol Int 17:599–612

    Article  CAS  PubMed  Google Scholar 

  31. Gagné AM, Danilenko KV, Rosolen SG, Hébert M (2009) Impact of oral melatonin on the electroretinogram cone response. J Circadian Rhythms. 7(1):14. [Epub ahead of print]

    Google Scholar 

  32. Arent J (2005) Melatonin: characteristics, concerns, and prospects. J Biol Rhythms 20(40):30–291

    Google Scholar 

  33. Lachapelle P, Benoit J, Little J, Lachapelle B (1993) Recording the oscillatory potentials of the electroretinogram with the DTL electrode. Doc Ophthalmol 83:119–130

    Article  CAS  PubMed  Google Scholar 

  34. Hébert M, Lachapelle P, Dumont M (1996) Reproducibility of electroretinograms recorded with DTL electrodes. Doc Ophthalmol 91:333–342

    Article  Google Scholar 

  35. Lachapelle P (1987) Analysis of the photopic electroretinogram recorded before and after dark adaptation. Can J Ophthalmol 22:354–361

    CAS  PubMed  Google Scholar 

  36. Peachey N, Alexander K, Fishman G, Derlacki D (1989) Properties of the human cone system electroretinogram during light adaptation. Appl Optics 28:1145–1150

    Article  Google Scholar 

  37. Rufiange M, Dassa J, Dembinska O et al (2003) The photopic ERG luminance-response function (photopic hill): method of analysis and clinical application. Vision Res 43(12):1405–1412

    Article  PubMed  Google Scholar 

  38. Rufiange M, Rousseau S, Dembinska O, Lachapelle P (2003) Cone-dominated ERG luminance-response function. Doc Ophtalmol 104:231–248

    Article  Google Scholar 

  39. Manglapus M, Uchiyama H, NF B, Barlow R (1998) Circadian rhythms of rod-cone dominance in the Japanese quail retina. J Neurosci 18:4775–4784

    CAS  PubMed  Google Scholar 

  40. Schneider T, Zrenner R (1991) Effects of D-1 and D-2 dopamine antagonists on ERG and optic nerve response of the cat. Exp Eye Res 52:425–430

    Article  CAS  PubMed  Google Scholar 

  41. Wiechmann AF, Vrieze MJ, Dighe R, Hu Y (2003) Responsiveness through a Mel1C melatonin receptor in transgenic Xenopus laevis retina. Invest Ophthalmol Vis Sci 44(10):4522–4531

    Article  PubMed  Google Scholar 

  42. Witkovsky P (2004) Dopamine and retinal function. Doc Ophthalmol 108:17–40

    Article  PubMed  Google Scholar 

  43. Wali N, Leguire L (1992) The photopic hill: a new phenomenon of the light adapted electroretinogram. Doc Ophthalmol 80:335–342

    Article  CAS  PubMed  Google Scholar 

  44. Sieving P, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11:519–532

    Article  CAS  PubMed  Google Scholar 

  45. Rufiange M, Rousseau S, Dembinska O, Lachapelle P (2002) Cone-dominated ERG luminance-response function: the Photopic Hill revisited. Doc Ophthalmol 104:231–248

    Article  PubMed  Google Scholar 

  46. Alexander KR, Raghuram A, Rajagopalan AS (2006) Cone phototransduction and growth of the ERG b-wave during light adaptation. Vision Res 46(22):3941–3948

    Article  PubMed  Google Scholar 

  47. Gagné AM, Gagné P, Hébert M (2007) Impact of light therapy on rod and cone functions in healthy subjects. Psychiatry Res 151(3):259–263

    Article  PubMed  Google Scholar 

  48. Beaulieu C, Rufiange M, Dumont M, Lachapette P (2009) Modulation of ERG retinal sensitivity parameters with light environment and photoperiod. Doc Ophtalmol 118:89–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hébert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavoie, J., Gagné, AM., Lavoie, MP. et al. Circadian variation in the electroretinogram and the presence of central melatonin. Doc Ophthalmol 120, 265–272 (2010). https://doi.org/10.1007/s10633-010-9221-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-010-9221-6

Keywords

Navigation