Skip to main content
Log in

Interpretation of the mouse electroretinogram

  • Original Research Paper
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

The mouse electroretinogram (ERG) consists of a complex set of signals or “waves” generated by multiple types of retinal cell. The origins of these waves are reviewed briefly for the C57BL/6J mouse. The differences in the properties of these waves are described for 34 strains of mice and 11 F1 hybrid mice, as is the way that inter-strain genetic polymorphisms can be exploited in order to help pin-point the genes responsible for ERG differences. There are certain technical difficulties, some subtle, that can arise in recording the ERG and these are classified and illustrated in order to facilitate their diagnosis. Forward genetic screens are described, along with abnormal mice that have been generated in a large screen. Several means are suggested for determining if a mouse having an abnormal ERG is a mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ERG:

Electroretinogram

OP:

Oscillatory potential

RPE:

Retinal pigment epithelium

STR:

Scotopic threshold response

References

  1. Heckenlively JR, Rodriguez JA, Daiger SP (1991) Autosomal dominant sectoral retinitis pigmentosa. Two families with transversion mutation in codon 23 of rhodopsin. Arch Ophthalmol 109:84–91

    PubMed  CAS  Google Scholar 

  2. Peachey NS, Ball SL (2003) Electrophysiological analysis of visual function in mutant mice. Doc Ophthalmol 107:13–36

    Article  PubMed  Google Scholar 

  3. Sharma S, Ball SL, Peachey NS (2005) Pharmacological studies of the mouse cone electroretinogram. Vis Neurosci 22:631–636

    PubMed  Google Scholar 

  4. Penn RD, Hagins WA (1969) Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature 223:201–204

    Article  PubMed  CAS  Google Scholar 

  5. Hagins WA, Penn RD, Yoshikami S (1970) Dark current and photocurrent in retinal rods. Biophys J 10:380–412

    PubMed  CAS  Google Scholar 

  6. Hood DC, Birch DG (1990) A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci 5:379–387

    Article  PubMed  CAS  Google Scholar 

  7. Goto Y et al (1996) Rod phototransduction in transgenic mice expressing a mutant opsin gene. J Opt Soc Am A-Optics Image Sci 13:577–585

    CAS  Google Scholar 

  8. Lyubarsky AL, Falsini B, Pennesi ME, Valentini P, Pugh EN Jr (1999) UV- and midwave-sensitive cone-driven retinal responses of the mouse: a possible phenotype for coexpression of cone photopigments. J Neurosci 19:442–455

    PubMed  CAS  Google Scholar 

  9. Robson JG, Frishman LJ (1995) Response linearity and kinetics of the cat retina: the bipolar cell component of the dark-adapted electroretinogram. Vis Neurosci 12:837–850

    PubMed  CAS  Google Scholar 

  10. Tian N, Slaughter MM (1995) Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res 35:1359–1364

    Article  PubMed  CAS  Google Scholar 

  11. Robson JG, Frishman LJ (1996) Photoreceptor and bipolar cell contributions to the cat electroretinogram: a kinetic model for the early part of the flash response. J Opt Soc Am A 13:613–622

    Article  CAS  Google Scholar 

  12. Robson JG, Maeda H, Saszik SM, Frishman LJ (2004) In vivo studies of signaling in rod pathways of the mouse using the electroretinogram. Vision Res 44:3253–3268

    Article  PubMed  CAS  Google Scholar 

  13. Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of the dark-adapted electroretinogram of the mouse. J Physiol 543:899–916

    Article  PubMed  CAS  Google Scholar 

  14. Steinberg R, Linsenmeier R, Griff E (1985) Retinal pigment epithelium contributions to the electroretinogram and electrooculogram. Progr Ret Res 4:33–66

    Article  Google Scholar 

  15. Hanitzsch R, Lichtenberger T (1997) Two neuronal retinal components of the electroretinogram c-wave. Doc Ophthalmol 94:275–285

    Article  PubMed  Google Scholar 

  16. Gallemore RP, Hughes BA (1998) Light-induced responses of the retinal pigment epithelium. In: Marmor MF, Wolfensberger TJ (eds) Retinal pigment epithelial function and disease. Oxford University Press, New York, pp 175–198

    Google Scholar 

  17. Wachtmeister L (1998) Oscillatory potentials in the retina: what do they reveal. Prog Retin Eye Res 17:485–521

    Article  PubMed  CAS  Google Scholar 

  18. Pinto LH et al (2004) Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Res 44:3335–3345

    Article  PubMed  CAS  Google Scholar 

  19. Wu J, Peachey NS, Marmorstein AD (2004) Light-evoked responses of the mouse retinal pigment epithelium. J Neurophysiol 91:1134–1142

    Article  PubMed  Google Scholar 

  20. Wade CM et al (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420:574–578

    Article  PubMed  CAS  Google Scholar 

  21. Wiltshire T et al (2003) Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc Natl Acad Sci USA 100:3380–3385

    Article  PubMed  CAS  Google Scholar 

  22. Pletcher MT et al (2004) Use of a dense single nucleotide polymorphism map for in silico mapping in the mouse. PLoS Biol 2:e393

    Article  PubMed  CAS  Google Scholar 

  23. Zeng Y et al (2004) RS-1 gene delivery to an adult Rs1 h knockout mouse model restores ERG b-wave with reversal of the electronegative waveform of X-linked Retinoschisis. Invest Ophthalmol Vis Sci 45:3279–3285

    Article  PubMed  Google Scholar 

  24. Masu M et al (1995) Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80:757–765

    Article  PubMed  CAS  Google Scholar 

  25. Pardue MT, McCall MA, LaVail MM, Gregg RG, Peachey NS (1998) A naturally occurring mouse model of X-linked congenital stationary night blindness. Invest Ophthalmol Vis Sci 39:2443–2449

    PubMed  CAS  Google Scholar 

  26. Chang B et al (2006) The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Vis Neurosci 23:11–24

    PubMed  Google Scholar 

  27. Pinto LH et al (2007) Generation, identification and functional characterization of the nob4 Mutation of Grm6 in the mouse. Vis Neurosci 24:111–123

    Article  PubMed  Google Scholar 

  28. Pacione LR, Szego MJ, Ikeda S, Nishina PM, McInnes RR (2003) Progress toward understanding the genetic and biochemical mechanisms of inherited photoreceptor degenerations. Annu Rev Neurosci 26:657–700

    Article  PubMed  CAS  Google Scholar 

  29. Bowes C et al (1993) Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc Natl Acad Sci USA 90:2955–2959

    Article  PubMed  CAS  Google Scholar 

  30. D’Cruz PM et al (2000) Mutation of the receptor tyrosine kinase gene Mertk in the retinal dystrophic RCS rat. Hum Mol Genet 9:645–651

    Article  PubMed  CAS  Google Scholar 

  31. Gregg RG et al (2003) Identification of the gene and the mutation responsible for the mouse nob phenotype. Invest Ophthalmol Vis Sci 44:378–384

    Article  PubMed  Google Scholar 

  32. Bech-Hansen NT et al (2000) Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet 26:319–323

    Article  PubMed  CAS  Google Scholar 

  33. Ikeda A, Naggert JK, Nishina PM (2002) Genetic modification of retinal degeneration in tubby mice. Exp Eye Res 74:455–461

    Article  PubMed  CAS  Google Scholar 

  34. Shedlovsky A, McDonald JD, Symula D, Dove WF (1993) Mouse models of human phenylketonuria. Genetics 134:1205–1210

    PubMed  CAS  Google Scholar 

  35. Chang B, Hawes NL, Hurd RE, Davisson MT, Nusinowitz S, Heckenlively JR (2002) Retinal degeneration mutants in the mouse. Vision Res 42:517–525

    Article  PubMed  CAS  Google Scholar 

  36. Keeler CE (1924) The inheritance of a retinal abnormality in white mice. Proc Natl Acad Sci USA 10:329–333

    Article  PubMed  CAS  Google Scholar 

  37. Bruckner R (1951) Slit-lamp microscopy and ophthalmoscopy in rat and mouse. Doc Ophthalmol 5–6:452–554

    Article  PubMed  Google Scholar 

  38. Pittler SJ, Keeler CE, Sidman RL, Baehr W (1993) PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc Natl Acad Sci USA 90:9616–9619

    Article  PubMed  CAS  Google Scholar 

  39. Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Res 40:2201–2209

    Article  PubMed  CAS  Google Scholar 

  40. Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45:4611–4616

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The faculty and students at the Jackson Laboratory Workshops on Mouse Vision in 2004 and 2006 contributed to the framework for this paper. This work was supported by U01-MH61915 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence H. Pinto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, L.H., Invergo, B., Shimomura, K. et al. Interpretation of the mouse electroretinogram. Doc Ophthalmol 115, 127–136 (2007). https://doi.org/10.1007/s10633-007-9064-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-007-9064-y

Keywords

Navigation