Skip to main content

Advertisement

Log in

Diltiazem-induced Neuroprotection in Glutamate Excitotoxicity and Ischemic Insult of Retinal Neurons

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Purpose: Cell death is often related to an abnormal increase in Ca2+ flux. In the retina, Ca2+ channels are mainly from the L-type that do not inactivate with time. Under excitotoxic and ischemic conditions, their continuous activation may therefore contribute significantly to the lethal Ca2+ influx. To assess this hypothesis, the Ca2+ channel blocker, diltiazem, was applied in excitotoxic and ischemic conditions. Methods: To induce excitotoxicity, retinal cell cultures from newborn rats were incubated with glutamate. The toxicity of glutamate was quantified by neuronal immunostaining with an antibody directed against the neuron specific enolase. Glutamate receptor function in vitro was assessed in pig retinal cell cultures by patch clamp recording. Retinal ischemia was induced by raising the intraocular pressure in adult rats. Retinal cell loss was quantified on retinal sections by measuring nuclear cell densities. Results: In retinal cell culture, glutamate application induced a major cell loss. This cell loss was attributed to glutamate excitotoxicity because glutamate receptor blockers like MK-801 and CNQX increased significantly neuronal survival. MK-801 and CNQX, which block NMDA and AMPA/Kainate receptors, respectively, had additive effects. Expression of AMPA/Kainate glutamate receptors in mixed adult retinal cell cultures was attested by patch clamp recording. In newborn rat retinal culture, glutamate excitotoxicity was significantly reduced by addition of the L-type Ca2+ channel blocker, diltiazem. In in vivo experiments, the increase in ocular pressure induced a decrease in cell number in the inner nuclear and ganglion cell layers. When animals received diltiazem injections, the ischemic treatment induced a less severe reduction in retinal cells; this neuroprotection was statistically significant in the ganglion cell layer. Conclusion: These results are consistent with previous studies suggesting that Ca2+ channel activation contributes to retinal cell death following either glutamate excitotoxicity or retinal ischemia. Under both conditions, the L-type Ca2+ channel blocker, diltiazem, can limit cell death. These results extend the potential application of diltiazem in retinal neuroprotection to retinal pathologies involving glutamate excitotoxicity and ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. JW. Olney (1982) ArticleTitleThe toxic effects of glutamate and related compounds in the retina and the brain Retina 2 341–359 Occurrence Handle6152914

    PubMed  Google Scholar 

  2. DW. Choi (1996) ArticleTitleIschemia-induced neuronal apoptosis Curr Opin Neurobiol 6 667–672 Occurrence Handle10.1016/S0959-4388(96)80101-2 Occurrence Handle8937832

    Article  PubMed  Google Scholar 

  3. U Boni ParticleDe DR. McLachlan (1985) ArticleTitleControlled induction of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate J Neurol Sci 68 105–118 Occurrence Handle10.1016/0022-510X(85)90093-0 Occurrence Handle2861254

    Article  PubMed  Google Scholar 

  4. EG McGeer PL. McGeer (1976) ArticleTitleDuplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids Nature 263 517–519 Occurrence Handle10.1038/263517a0 Occurrence Handle9592

    Article  PubMed  Google Scholar 

  5. EB Dreyer D Zurakowski RA Schumer SM Podos SA. Lipton (1996) ArticleTitleElevated glutamate levels in the vitreous body of humans and monkeys with glaucoma Arch Ophthalmol 114 299–305 Occurrence Handle8600890

    PubMed  Google Scholar 

  6. JS Burgos A Barat G. Ramirez (2000) ArticleTitleCa2+-dependent kainate excitotoxicity in the chick embryonic neural retina ex vivo Neuroreport 11 3855–3858 Occurrence Handle11117503

    PubMed  Google Scholar 

  7. S Allcorn M Catsicas P. Mobbs (1996) ArticleTitleDevelopmental expression and self-regulation of Ca2+ entry via AMPA/KA receptors in the embryonic chick retina Eur J Neurosci 8 2499–2510 Occurrence Handle8996799

    PubMed  Google Scholar 

  8. M Catsicas S Allcorn P. Mobbs (2001) ArticleTitleEarly activation of Ca(2+)-permeable AMPA receptors reduces neurite outgrowth in embryonic chick retinal neurons J Neurobiol 49 200–211 Occurrence Handle10.1002/neu.1075 Occurrence Handle11745658

    Article  PubMed  Google Scholar 

  9. ME Graham RD. Burgoyne (1995) ArticleTitleEffects of calcium channel antagonists on calcium entry and glutamate release from cultured rat cerebellar granule cells J Neurochem 65 2517–2524 Occurrence Handle7595546

    PubMed  Google Scholar 

  10. RJ Ulshafer DM Sherry R Dawson SuffixJr DR. Wallace (1990) ArticleTitleExcitatory amino acid involvement in retinal degeneration Brain Res 531 350–354 Occurrence Handle10.1016/0006-8993(90)90800-Q Occurrence Handle1981164

    Article  PubMed  Google Scholar 

  11. JH. Brandstatter (2002) ArticleTitleGlutamate receptors in the retina: the molecular substrate for visual signal processing Curr Eye Res 25 327–331 Occurrence Handle10.1076/ceyr.25.6.327.14235 Occurrence Handle12789538

    Article  PubMed  Google Scholar 

  12. T Okada K Schultz W Geurtz H Hatt R. Weiler (1999) ArticleTitleAMPA-preferring receptors with high Ca2+ permeability mediate dendritic plasticity of retinal horizontal cells Eur J Neurosci 11 1085–1095 Occurrence Handle10.1046/j.1460-9568.1999.00516.x Occurrence Handle10103101

    Article  PubMed  Google Scholar 

  13. AL Carvalho CB Duarte CJ Faro AP Carvalho EV. Pires (1998) ArticleTitleCalcium influx through AMPA receptors and through calcium channels is regulated by protein kinase C in cultured retina amacrine-like cells J Neurochem 70 2112–2119 Occurrence Handle9572298

    PubMed  Google Scholar 

  14. IL Ferreira CB Duarte AP. Carvalho (1998) ArticleTitleKainate-induced retina amacrine-like cell damage is mediated by AMPA receptors Neuroreport 9 3471–3475 Occurrence Handle9855301

    PubMed  Google Scholar 

  15. KS. Elmslie (2003) ArticleTitleNeurotransmitter modulation of neuronal calcium channels J Bioenerg Biomembr 35 477–489 Occurrence Handle10.1023/B:JOBB.0000008021.55853.18 Occurrence Handle15000517

    Article  PubMed  Google Scholar 

  16. P Villa Particlede la CF Vaquero A. Kaneko (1998) ArticleTitleTwo types of calcium currents of the mouse bipolar cells recorded in the retinal slice preparation Eur J Neurosci 10 317–323 Occurrence Handle10.1046/j.1460-9568.1998.00051.x Occurrence Handle9753140

    Article  PubMed  Google Scholar 

  17. CL Pfeiffer-Linn EM. Lasater (1996) ArticleTitleWhole cell and single-channel properties of a unique voltage-activated sustained calcium current identified in teleost retinal horizontal cells J Neurophysiol 75 609–619 Occurrence Handle8714638

    PubMed  Google Scholar 

  18. MF Wilkinson S. Barnes (1996) ArticleTitleThe dihydropyridine-sensitive calcium channel subtype in cone photoreceptors J Gen Physiol 107 621–630 Occurrence Handle10.1085/jgp.107.5.621 Occurrence Handle8740375

    Article  PubMed  Google Scholar 

  19. VP Costa A Harris E Stefansson J Flammer GK Krieglstein N Orzalesi A Heijl JP Renard LM. Serra (2003) ArticleTitleThe effects of antiglaucoma and systemic medications on ocular blood flow Prog Retin Eye Res 22 769–805 Occurrence Handle10.1016/S1350-9462(03)00064-8 Occurrence Handle14575724

    Article  PubMed  Google Scholar 

  20. NN Osborne RJ Casson JP Wood G Chidlow M Graham J Melena (2004) ArticleTitleRetinal ischemia: mechanisms of damage and potential therapeutic strategies Prog Retin Eye Res 23 91–147 Occurrence Handle10.1016/j.preteyeres.2003.12.001 Occurrence Handle14766318

    Article  PubMed  Google Scholar 

  21. M Frasson JA Sahel M Fabre M Simonutti H. Dreyfus S Picaud (1999) ArticleTitleRetinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse Nat Med 5 1183–1187 Occurrence Handle10.1038/13508 Occurrence Handle10502823

    Article  PubMed  Google Scholar 

  22. V Heidinger D Hicks J Sahel H. Dreyfus (1997) ArticleTitlePeptide growth factors but not ganglioside protect against excitotoxicity in rat retinal neurons in vitro Brain Res 767 279–288 Occurrence Handle10.1016/S0006-8993(97)00605-7 Occurrence Handle9367259

    Article  PubMed  Google Scholar 

  23. C Gaudin V Forster J Sahel H Dreyfus D. Hicks (1996) ArticleTitleSurvival and regeneration of adult human and other mammalian photoreceptors in culture Invest Ophthalmol Vis Sci 37 2258–2268 Occurrence Handle8843922

    PubMed  Google Scholar 

  24. S Picaud D Hicks V Forster J Sahel H. Dreyfus (1998) ArticleTitleAdult human retinal neurons in culture: physiology of horizontal cells Invest Ophthalmol Vis Sci 39 2637–2648 Occurrence Handle9856773

    PubMed  Google Scholar 

  25. GB Grant FS Werblin (1994) ArticleTitleLow-cost data acquisition and analysis programs for electrophysiology J Neurosci Meth 55 89–98 Occurrence Handle10.1016/0165-0270(94)90044-2

    Article  Google Scholar 

  26. M Weber S Mohand-Said D Hicks H Dreyfus JA. Sahel (1996) ArticleTitleMonosialoganglioside GM1 reduces ischemia–reperfusion-induced injury in the rat retina Invest Ophthalmol Vis Sci 37 267–273 Occurrence Handle8603830

    PubMed  Google Scholar 

  27. TE. Hughes (1990) ArticleTitleA light- and electron-microscopic investigation of the optic tectum of the frog, Rana pipiens. I: the retinal axons Vis Neurosci 4 499–518 Occurrence Handle2278931

    PubMed  Google Scholar 

  28. E Peritz (1984) ArticleTitleBerkson’s bias revisited J Chronic Dis 37 909–916 Occurrence Handle10.1016/0021-9681(84)90067-5 Occurrence Handle6396316

    Article  PubMed  Google Scholar 

  29. A Frandsen J Drejer A. Schousboe (1989) ArticleTitleDirect evidence that excitotoxicity in cultured neurons is mediated via N-methyl-d-aspartate (NMDA) as well as non-NMDA receptors J Neurochem 53 297–299 Occurrence Handle2566655

    PubMed  Google Scholar 

  30. DC Rogers AJ. Hunter (1997) ArticleTitleDissociation of effects of glutamate receptor antagonists on excitotoxic and hypoxic neuronal cell death in a novel rat cortical culture system Brain Res Bull 44 131–139 Occurrence Handle10.1016/S0361-9230(97)00102-0 Occurrence Handle9292202

    Article  PubMed  Google Scholar 

  31. JR Brorson PA Manzolillo RJ. Miller (1994) ArticleTitleCa2+ entry via AMPA/KA receptors and excitotoxicity in cultured cerebellar Purkinje cells J Neurosci 14 187–197 Occurrence Handle7904304

    PubMed  Google Scholar 

  32. G Cebers B Zhivotovsky M Ankarcrona S. Liljequist (1997) ArticleTitleAMPA neurotoxicity in cultured cerebellar granule neurons: mode of cell death Brain Res Bull 43 393–403 Occurrence Handle10.1016/S0361-9230(97)00025-7 Occurrence Handle9241442

    Article  PubMed  Google Scholar 

  33. RD Randall SA. Thayer (1992) ArticleTitleGlutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons J Neurosci 12 1882–1895 Occurrence Handle1349638

    PubMed  Google Scholar 

  34. L Peichl J. Bolz (1984) ArticleTitleKainic acid induces sprouting of retinal neurons Science 223 503–504 Occurrence Handle6691162

    PubMed  Google Scholar 

  35. L Facci A Leon SD. Skaper (1990) ArticleTitleExcitatory amino acid neurotoxicity in cultured retinal neurons: involvement of N-methyl-d-aspartate (NMDA) and nonNMDA receptors and effect of ganglioside GM1 J Neurosci Res 27 202–210 Occurrence Handle10.1002/jnr.490270210 Occurrence Handle2174980

    Article  PubMed  Google Scholar 

  36. N Toriu A Akaike H Yasuyoshi S Zhang S Kashii Y Honda M Shimazawa H. Hara (2000) ArticleTitleLomerizine, a Ca2+ channel blocker, reduces glutamate-induced neurotoxicity and ischemia/reperfusion damage in rat retina Exp Eye Res 70 475–484 Occurrence Handle10.1006/exer.1999.0809 Occurrence Handle10865996

    Article  PubMed  Google Scholar 

  37. NJ Sucher E Aizenman SA. Lipton (1991) ArticleTitleN-methyl-d-aspartate antagonists prevent kainate neurotoxicity in rat retinal ganglion cells in vitro J Neurosci 11 966–971 Occurrence Handle1672708

    PubMed  Google Scholar 

  38. EB Dreyer ZH Pan S Storm SA. Lipton (1994) ArticleTitleGreater sensitivity of larger retinal ganglion cells to NMDA-mediated cell death Neuroreport 5 629–631 Occurrence Handle7912962

    PubMed  Google Scholar 

  39. M Kimura K Katayama Y. Nishizawa (1999) ArticleTitleRole of glutamate receptors and voltage-dependent calcium channels in glutamate toxicity in energy-compromised cortical neurons Jpn J Pharmacol 80 351–358 Occurrence Handle10.1254/jjp.80.351 Occurrence Handle10496336

    Article  PubMed  Google Scholar 

  40. A Schurr RS Payne BM. Rigor (1995) ArticleTitleSynergism between diltiazem and MK-801 but not APV in protecting hippocampal slices against hypoxic damage Brain Res 684 233–236 Occurrence Handle10.1016/0006-8993(95)00466-4 Occurrence Handle7583230

    Article  PubMed  Google Scholar 

  41. NJ Sucher SZ Lei SA. Lipton (1991) ArticleTitleCalcium channel antagonists attenuate NMDA receptor-mediated neurotoxicity of retinal ganglion cells in culture Brain Res 551 297–302 Occurrence Handle10.1016/0006-8993(91)90944-Q Occurrence Handle1680525

    Article  PubMed  Google Scholar 

  42. DL Small R Monette AM Buchan P. Morley (1997) ArticleTitleIdentification of calcium channels involved in neuronal injury in rat hippocampal slices subjected to oxygen and glucose deprivation Brain Res 753 209–218 Occurrence Handle10.1016/S0006-8993(96)01385-6 Occurrence Handle9125405

    Article  PubMed  Google Scholar 

  43. LH Burns Z Jin SS. Bowersox (1999) ArticleTitleThe neuroprotective effects of intrathecal administration of the selective N-type calcium channel blocker ziconotide in a rat model of spinal ischemia J Vasc Surg 30 334–343 Occurrence Handle10436454

    PubMed  Google Scholar 

  44. NN Osborne JP Wood A Cupido J Melena G. Chidlow (2002) ArticleTitleTopical flunarizine reduces IOP and protects the retina against ischemia-excitotoxicity Invest Ophthalmol Vis Sci 43 1456–1464 Occurrence Handle11980861

    PubMed  Google Scholar 

  45. K Takahashi TT Lam DP Edward ER Buchi MO. Tso (1992) ArticleTitleProtective effects of flunarizine on ischemic injury in the rat retina Arch Ophthalmol 110 862–870 Occurrence Handle1596236

    PubMed  Google Scholar 

  46. F Block M. Schwarz (1998) ArticleTitleThe b-wave of the electroretinogram as an index of retinal ischemia Gen Pharmacol 30 281–287 Occurrence Handle10.1016/S0306-3623(97)00359-5 Occurrence Handle9510075

    Article  PubMed  Google Scholar 

  47. CE Crosson JA Willis DE. Potter (1990) ArticleTitleEffect of the calcium antagonist, nifedipine, on ischemic retinal dysfunction J Ocul Pharmacol 6 293–299 Occurrence Handle2097313

    PubMed  Google Scholar 

  48. JP Nowicki ET MacKenzie AR. Young (1982) ArticleTitleBrain ischaemia, calcium and calcium antagonists Pathol Biol (Paris) 30 282–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Picaud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallazza-Deschamps, G., Fuchs, C., Cia, D. et al. Diltiazem-induced Neuroprotection in Glutamate Excitotoxicity and Ischemic Insult of Retinal Neurons. Doc Ophthalmol 110, 25–35 (2005). https://doi.org/10.1007/s10633-005-7341-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-005-7341-1

Keywords

Navigation