Skip to main content
Log in

Switchings of semifield multiplications

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \(B(X,Y)\) be a polynomial over \(\mathbb {F}_{q^n}\) which defines an \(\mathbb {F}_q\)-bilinear form on the vector space \(\mathbb {F}_{q^n}\), and let \(\xi \) be a nonzero element in \(\mathbb {F}_{q^n}\). In this paper, we consider for which \(B(X,Y)\), the binary operation \(xy+B(x,y)\xi \) defines a (pre)semifield multiplication on \({\mathbb {F}}_{q^n}\). We prove that this question is equivalent to finding \(q\)-linearized polynomials \(L(X)\in \mathbb {F}_{q^n}[X]\) such that \( {\mathrm {Tr}}_{q^n/q}(L(x)/x)\ne 0\) for all \(x\in \mathbb {F}_{q^n}^*\). For \(n\le 4\), we present several families of \(L(X)\) and we investigate the derived (pre)semifields. When \(q\) equals a prime \(p\), we show that if \(n>\frac{1}{2}(p-1)(p^2-p+4)\), \(L(X)\) must be \(a_0 X\) for some \(a_0\in \mathbb {F}_{p^n}\) satisfying \( {\mathrm {Tr}}_{q^n/q}(a_0)\ne 0\). Finally, we include a natural connection with certain cyclic codes over finite fields, and we apply the Hasse–Weil–Serre bound for algebraic curves to prove several necessary conditions for such kind of \(L(X)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert A.A.: Finite division algebras and finite planes. In: Proceedings of the Symposium on Applied Mathematics, vol. 10, pp. 53–70. American Mathematical Society, Providence (1960).

  2. Bierbrauer J.: Semifields, theory and elementary constructions. Invited talk presented in Combinatorics 2012, Perugia (2012).

  3. Bosma W., Cannon J., Playoust C.: The MAGMA algebra system I: the user language. J. Symb. Comput. 24(3–4), 235–265 (1997).

  4. Cardinali I., Polverino O., Trombetti R.: Semifield planes of order \(q^4\) with kernel \(\mathbb{F}_{q^2}\) and center \(\mathbb{F}_q\). Eur. J. Comb. 27(6), 940–961 (2006).

  5. Dembowski P.: Finite Geometries. Springer, New York (1997).

  6. Dembowski P., Ostrom T.G.: Planes of order \(n\) with collineation groups of order \(n^2\). Math. Z. 103, 239–258 (1968).

  7. Dickson L.E.: On commutative linear algebras in which division is always uniquely possible. Trans. Am. Math. Soc. 7(4), 514–522 (1906).

  8. Ganley M.J.: Polarities in translation planes. Geom. Dedicata 1(1), 103–116 (1972).

  9. Garcia A., Stichtenoth H.: Elementary abelian \(p\)-extensions of algebraic function fields. Manuscr. Math. 72(1), 67–79 (1991).

  10. Guneri C., Özbudak F.: Weil–Serre type bounds for cyclic codes. IEEE Trans. Inf. Theory 54(12), 5381–5395 (2008).

  11. Hirschfeld J.W.P.: Projective Geometries over Finite Fields, 2nd edn. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1998).

  12. Hou X.: Solution to a problem of S. Payne. Proc. Am. Math. Soc. 132(1), 1–6 (2004).

  13. Hughes D.R., Piper F.C.: Projective Planes. Springer, New York (1973).

  14. Johnson N.L., Jha V., Biliotti M.: Handbook of Finite Translation Planes. Pure and Applied Mathematics (Boca Raton), vol. 289. Chapman & Hall/CRC, Boca Raton (2007).

  15. Jungnickel D.: On automorphism groups of divisible designs. Can. J. Math. 34(2), 257–297 (1982).

  16. Kantor W.M.: Commutative semifields and symplectic spreads. J. Algebra 270(1), 96–114 (2003).

  17. Knuth D.E.: Finite semifields and projective planes. J. Algebra 2, 182–217 (1965).

  18. Lavrauw M., Polverino O.: Finite semifields. In: Storme, L., De Beule, J. (eds.), Current Research Topics in Galois Geometry, chap. 6, pp. 131–160. NOVA Academic Publishers, Hauppauge (2011).

  19. Lidl R., Niederreiter H.: Finite Fields. Encyclopedia of Mathematics and Its Applications, 2nd edn, vol. 20. Cambridge University Press, Cambridge (1997).

  20. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

  21. Menichetti G.: On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field. J. Algebra 47(2), 400–410 (1977).

  22. Payne S.E.: Linear transformations of a finite field. Am. Math. Monthly 78, 659–660 (1971).

  23. Payne S.E.: A complete determination of translation ovoids in finite Desarguesian planes. Lincei—Rend. Sc. Fis. Mat. Nat. LI, pp. 328–331 (1971).

  24. Pott A., Zhou Y.: Switching construction of planar functions on finite fields. In: Proceedings of the Third International Conference on Arithmetic of Finite Fields. WAIFI’10, pp. 135–150. Springer, Berlin (2010).

  25. Schmidt, K.-U., Zhou, Y.: Planar functions over fields of characteristic two. J. Algebraic Comb. 40(2), 503–526 (2014).

  26. Stichtenoth H.: Algebraic Function Fields and Codes, 2nd edn. Springer, Berlin (2008).

  27. Wedderburn J.H.M.: A theorem on finite algebras. Trans. Am. Math. Soc. 6(3), 349–352 (1905).

  28. Wolfmann J.: New bounds on cyclic codes from algebraic curves. In: Cohen, G., Wolfmann, J. (eds.) Coding Theory and Applications. Lecture Notes in Computer Science, vol. 388, pp. 47–62. Springer, Berlin (1989).

  29. Zhou Y.: \((2^n,2^n,2^n,1)\)-Relative difference sets and their representations. J. Comb. Des. 21(12), 563–584 (2013).

Download references

Acknowledgments

The authors are very grateful to the anonymous referees for their valuable comments and suggestions. Xiang-dong Hou is research partially supported by NSA Grant H98230-12-1-0245. Ferruh Özbudak is research partially supported by TUBİTAK under Grant No. TBAG-112T011. Yue Zhou is partially supported by the National Basic Research Program of China (No. 2013CB338002) and the National Natural Science Foundation of China (No. 11401579, 61272484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Zhou.

Additional information

Communicated by S. Ball.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Xd., Özbudak, F. & Zhou, Y. Switchings of semifield multiplications. Des. Codes Cryptogr. 80, 217–239 (2016). https://doi.org/10.1007/s10623-015-0081-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0081-7

Keywords

Mathematics Subject Classification

Navigation