Skip to main content
Log in

Algebraic decoding of negacyclic codes over \({\mathbb Z_4}\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this article we investigate Berlekamp’s negacyclic codes and discover that these codes, when considered over the integers modulo 4, do not suffer any of the restrictions on the minimum distance observed in Berlekamp’s original papers: our codes have minimum Lee distance at least 2t + 1, where the generator polynomial of the code has roots α, α 3, . . . , α 2t-1 for a primitive 2nth root α of unity in a Galois extension of \({\mathbb {Z}_4}\) ; no restriction on t is imposed. We present an algebraic decoding algorithm for this class of codes that corrects any error pattern of Lee weight ≤ t. Our treatment uses Gröbner bases, the decoding complexity is quadratic in t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams W.W., Loustaunau P.: An Introduction to Gröbner Bases. American Mathematical Society, Providence, RI (1994).

  2. Berlekamp E.R.: Negacyclic codes for the Lee metric. In: Combinatorial Mathematics and Its Applications (Proc. Conference, University of North Carolina, Chapel Hill, NC, 1967), pp. 298–316. University of North Carolina, Chapel Hill, NC (1969).

  3. Berlekamp E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  4. Byrne E., Fitzpatrick P.: Hamming metric decoding of alternant codes over Galois rings. IEEE Trans. Inf. Theory 48(3), 683–694 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byrne E., Mora T.: Gröbner bases over commutative rings and applications to coding theory. In: Sala, M., Mora, T., Perret, L., Sakata, S., Traverso, C. (eds) Gröbner Bases, Coding, and Cryptography., pp. 239–261. RISC Series. Springer, Berlin (2009)

    Chapter  Google Scholar 

  6. Fitzpatrick P.: On the key equation. IEEE Trans. Inf. Theory 41(5), 1290–1302 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guerini E., Rimoldi A.: FGLM-like decoding: from Fitzpatrick’s approach to recent developments. In: Sala, M., Mora, R., Perret, L., Sakata, S., Traverso, C. (eds) Gröbner Bases, Coding, and Cryptography., pp. 197–218. RISC Series. Springer, Berlin (2009)

    Chapter  Google Scholar 

  8. Raghavendran R.: Finite associative rings. Compos. Math. 21, 195–229 (1969)

    MathSciNet  MATH  Google Scholar 

  9. Wolfmann J.: Negacyclic and cyclic codes over \({{\mathbb Z}_4^n}\) . IEEE Trans. Inf. Theory 45(7), 2527–2532 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Zumbrägel.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, E., Greferath, M., Pernas, J. et al. Algebraic decoding of negacyclic codes over \({\mathbb Z_4}\) . Des. Codes Cryptogr. 66, 3–16 (2013). https://doi.org/10.1007/s10623-012-9632-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9632-3

Keywords

Mathematics Subject Classification

Navigation