Skip to main content
Log in

On the minimum length of ternary linear codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

From the geometrical point of view, we prove that [g 3(6, d) + 1, 6, d]3 codes exist for d = 118–123, 283–297 and that [g 3(6, d), 6, d]3 codes for d = 100, 341, 342 and [g 3(6, d) + 1, 6, d]3 codes for d = 130, 131, 132 do not exist, where \({g_3(k,\,d)=\sum_{i=0}^{k-1}\left\lceil d/3^i \right\rceil}\). These determine the exact value of n 3(6, d) for d = 100, 118–123, 130, 131, 132, 283–297, 341, 342, where n q (kd) is the minimum length n for which an [nkd] q code exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouyukliev I., Simonis J.: Some new results for optimal ternary linear codes. IEEE Trans. Inform. Theory 48, 981–985 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brouwer A.E., van Eupen M.: The correspondence between projective codes and 2-weight codes. Des. Codes Cryptogr. 11, 261–266 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Hamada N.: A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry. Discret. Math. 116, 229–268 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Hamada N., Helleseth T.: The nonexistence of some ternary linear codes and update of the bounds for n 3(6, d), 1 ≤  d ≤  243. Math. Jpn. 52, 31–43 (2000)

    MathSciNet  MATH  Google Scholar 

  5. Hill R.: Caps and codes. Discret. Math. 22, 111–137 (1978)

    Article  MATH  Google Scholar 

  6. Hill R.: Optimal linear codes. In: Mitchell, C. (eds) Cryptography and Coding II, pp. 75–104. Oxford University Press, Oxford (1992)

    Google Scholar 

  7. Hill R.: An extension theorem for linear codes. Des. Codes Cryptogr. 17, 151–157 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hill R., Newton D.E.: Optimal ternary linear codes. Des. Codes Cryptogr. 2, 137–157 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  10. Kohnert A.: Best linear codes. http://www.algorithm.uni-bayreuth.de/en/research/Coding_Theory/Linear_Codes_BKW/. Accessed September 2011.

  11. Landgev I., Maruta T., Hill R.: On the nonexistence of quaternary [51, 4, 37] codes. Finite Fields Appl. 2, 96–110 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Landjev I.N.: The nonexistence of some optimal ternary linear codes of dimension five. Des. Codes Cryptogr. 15, 245–258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maruta T.: On the nonexistence of q-ary linear codes of dimension five. Des. Codes Cryptogr. 22, 165–177 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Maruta T.: Extendability of ternary linear codes. Des. Codes Cryptogr. 35, 175–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maruta T.: Griesmer bound for linear codes over finite fields. http://www.geocities.jp/mars39geo/griesmer.htm. Accessed September 2011.

  16. Maruta T., Oya Y.: On optimal ternary linear codes of dimension 6. Adv. Math. Commun. 5, 505–520 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Oya Y.: The nonexistence of [132, 6, 86]3 codes and [135, 6, 88]3 codes. Serdica J. Comput. 5, 117–128 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Pellegrino G.: Sul massimo ordine delle calotte in S 4,3. Matematiche (Catania) 25, 1–9 (1970)

    MathSciNet  Google Scholar 

  19. Takenaka M., Okamoto K., Maruta T.: On optimal non-projective ternary linear codes. Discret. Math 308, 842–854 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. van Eupen M., Hill R.: An optimal ternary [69, 5, 45] code and related codes. Des. Codes Cryptogr. 4, 271–282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. van Eupen M., Lisonêk P.: Classification of some optimal ternary linear codes of small length. Des. Codes Cryptogr. 10, 63–84 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ward H.N.: Divisibility of codes meeting the Griesmer bound. J. Comb. Theory A 83, 79–93 (1998)

    Article  MATH  Google Scholar 

  23. Yoshida Y., Maruta T.: Ternary linear codes and quadrics. Electron. J. Comb. 16,#R9 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Maruta.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruta, T., Oya, Y. On the minimum length of ternary linear codes. Des. Codes Cryptogr. 68, 407–425 (2013). https://doi.org/10.1007/s10623-011-9593-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-011-9593-y

Keywords

Mathematics Subject Classification (2000)

Navigation