Skip to main content

Advertisement

Log in

LncRNA SNHG7 Promotes the HCC Progression Through miR-122-5p/FOXK2 Axis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality and severe complication in China. Numerous studies have shown that long noncoding RNAs (lncRNAs) are involved in the regulation of various processes in cancer cells. Our research aimed to investigate the underlying mechanism of the lncRNA small nucleolar RNA host gene 7 (SNHG7) in HCC development. The expression of SNHG7, microRNA-122-5p (miR-122-5p), and Forkhead box K2 (FOXK2) was assessed via quantitative real-time polymerase chain reaction. 3-(4,5) -dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) and transwell assays were performed to measure cell viability, migration, and invasion, respectively. The relative protein levels were detected by Western blot. The relationships between miR-122-5p and SNHG7 or FOXK2 were predicted by online software and then confirmed by dual-luciferase reporter assay. Animal experiments were conducted to clarify the effects of SNHG7 on proliferation in vivo. To begin with, SNHG7 was upregulated, while miR-122-5p was downregulated in HCC tissues and cells. Downregulation of SNHG7 inhibited cell growth and metastasis. Interestingly, SNHG7 could abolish the effects of miR-122-5p on HCC cells. Furthermore, miR-122-5p targeted FOXK2 and miR-122-5p recovered the effects of FOXK2 downregulation on cell growth and metastasis in HCC cells. Besides, SNHG7 facilitated HCC tumor growth in vivo through the miR-122-5p/FOXK2 axis. The lncRNA SNHG7 boosted the development of HCC by regulating FOXK2 through sponging miR-122-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. De Mattia E, Cecchin E, Guardascione M et al. Pharmacogenetics of the systemic treatment in advanced hepatocellular carcinoma. World J Gastroenterol. 2019;25:3870–3896

    Article  Google Scholar 

  2. Li C, Xu X. Biological functions and clinical applications of exosomal non-coding RNAs in hepatocellular carcinoma. Cell Mol Life Sci. 2019;76:4203–4219

    Article  CAS  Google Scholar 

  3. Salmena L, Poliseno L, Tay Y, Kats L, Pandolfi PP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 2011;146:353–358

    Article  CAS  Google Scholar 

  4. Cesana M, Cacchiarelli D, Legnini I et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–369

    Article  CAS  Google Scholar 

  5. Fan X, Yuan J, Xie J et al. Long non-protein coding RNA DANCR functions as a competing endogenous RNA to regulate osteoarthritis progression via miR-577/SphK2 axis. Biochem Biophys Res Commun. 2018;500:658–664

    Article  CAS  Google Scholar 

  6. López-Urrutia E, Bustamante Montes LP, de Guevara Ladrón, Cervantes D, Pérez-Plasencia C, Campos-Parra AD. Crosstalk between long non-coding rnas, micro-rnas and mrnas: deciphering molecular mechanisms of master regulators in cancer. Front Oncol. 2019;9:669

    Article  Google Scholar 

  7. Gao YT, Zhou YC. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 7 (SNHG7) promotes breast cancer progression by sponging miRNA-381. Eur Rev Med Pharmacol Sci. 2019;23:6588–6595

    PubMed  Google Scholar 

  8. Cheng D, Fan J, Ma Y et al. LncRNA SNHG7 promotes pancreatic cancer proliferation through ID4 by sponging miR-342-3p. Cell Biosci. 2019;9:28

    Article  Google Scholar 

  9. Chi R, Chen X, Liu M et al. Role of SNHG7-miR-653-5p-STAT2 feedback loop in regulating neuroblastoma progression. J Cell Physiol. 2019;234:13403–13412

    Article  CAS  Google Scholar 

  10. Deng Y, Zhao F, Zhang Z, Sun F, Wang M. Long Noncoding RNA SNHG7 Promotes the Tumor Growth and Epithelial-to-Mesenchymal Transition via Regulation of miR-34a Signals in Osteosarcoma. Cancer Biother Radiopharm. 2018;33:365–372

    Article  CAS  Google Scholar 

  11. Li Y, Zeng C, Hu J et al. Long non-coding RNA-SNHG7 acts as a target of miR-34a to increase GALNT7 level and regulate PI3K/Akt/mTOR pathway in colorectal cancer progression. J Hematol Oncol. 2018;11:89

    Article  Google Scholar 

  12. Zhong X, Long Z, Wu S, Xiao M, Hu W. LncRNA-SNHG7 regulates proliferation, apoptosis and invasion of bladder cancer cells assurance guidelines. J buon. 2018;23:776–781

    PubMed  Google Scholar 

  13. Ren J, Yang Y, Xue J et al. Long noncoding RNA SNHG7 promotes the progression and growth of glioblastoma via inhibition of miR-5095. Biochem Biophys Res Commun. 2018;496:712–718

    Article  CAS  Google Scholar 

  14. Shukla GC, Singh J, Barik S. MicroRNAs: Processing, Maturation, Target Recognition and Regulatory Functions. Mol Cell Pharmacol. 2011;3:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Nitu R, Rogobete AF, Gundogdu F et al. microRNAs Expression as Novel Genetic Biomarker for Early Prediction and Continuous Monitoring in Pulmonary Cancer. Biochem Genet. 2017;55:281–290

    Article  CAS  Google Scholar 

  16. Cortez-Dias N, Costa MC, Carrilho-Ferreira P et al. Circulating miR-122-5p/miR-133b Ratio Is a Specific Early Prognostic Biomarker in Acute Myocardial Infarction. Circ J. 2016;80:2183–2191

    Article  CAS  Google Scholar 

  17. Ergün S, Ulasli M, Igci YZ et al. The association of the expression of miR-122-5p and its target ADAM10 with human breast cancer. Mol Biol Rep. 2015;42:497–505

    Article  Google Scholar 

  18. Ma J, Li T, Han X, Yuan H. Knockdown of LncRNA ANRIL suppresses cell proliferation, metastasis, and invasion via regulating miR-122-5p expression in hepatocellular carcinoma. J Cancer Res Clin Oncol. 2018;144:205–214

    Article  CAS  Google Scholar 

  19. Nestal de Moraes G, Carneiro LDT, Maia RC, Lam EW, Sharrocks AD. FOXK2 transcription factor and its emerging roles in cancer. Cancers (Basel). 2019;11:393

    Article  CAS  Google Scholar 

  20. Lin MF, Yang YF, Peng ZP et al. FOXK2, regulted by miR-1271-5p, promotes cell growth and indicates unfavorable prognosis in hepatocellular carcinoma. Int J Biochem Cell Biol. 2017;88:155–161

    Article  CAS  Google Scholar 

  21. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;13:97–110

    Article  Google Scholar 

  22. Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel). 2019;11:1170

    Article  CAS  Google Scholar 

  23. Sun BZ, Ji DG, Feng ZX, Wang Y. Long noncoding RNA SNHG7 represses the expression of RBM5 to strengthen metastasis of hepatocellular carcinoma. Eur Rev Med Pharmacol Sci. 2019;23:5699–5704

    PubMed  Google Scholar 

  24. Zhang Y, Tao Y, Liao Q. Long noncoding RNA: a crosslink in biological regulatory network. Brief Bioinform. 2018;19:930–945

    Article  CAS  Google Scholar 

  25. Han Y, Hu H, Zhou J. Knockdown of LncRNA SNHG7 inhibited epithelial-mesenchymal transition in prostate cancer though miR-324-3p/WNT2B axis in vitro. Pathol Res Pract. 2019;215:152537

    Article  CAS  Google Scholar 

  26. Qi H, Wen B, Wu Q et al. Long noncoding RNA SNHG7 accelerates prostate cancer proliferation and cycle progression through cyclin D1 by sponging miR-503. Biomed Pharmacother. 2018;102:326–332

    Article  CAS  Google Scholar 

  27. Liu YH, Liu JL, Wang Z, Zhu XH, Chen XB, Wang MQ. MiR-122-5p suppresses cell proliferation, migration and invasion by targeting SATB1 in nasopharyngeal carcinoma. Eur Rev Med Pharmacol Sci. 2019;23:622–629

    PubMed  Google Scholar 

  28. Maruyama S, Furuya S, Shiraishi K et al. miR-122-5p as a novel biomarker for alpha-fetoprotein-producing gastric cancer. World J Gastrointest Oncol. 2018;10:344–350

    Article  Google Scholar 

  29. Zhang L, Wang Y, Sun J, Ma H, Guo C. LINC00205 promotes proliferation, migration and invasion of HCC cells by targeting miR-122-5p. Pathol Res Pract. 2019;215:152515

    Article  CAS  Google Scholar 

  30. van der Heide LP, Wijchers PJ, von Oerthel L, Burbach JP, Hoekman MF, Smidt MP. FoxK2 is required for cellular proliferation and survival. J Cell Physiol. 2015;230:1013–1023

    Article  Google Scholar 

  31. Liu M, Yu J, Wang D et al. Epigenetically Upregulated MicroRNA-602 Is Involved in a Negative Feedback Loop with FOXK2 in Esophageal Squamous Cell Carcinoma. Mol Ther. 2019;27:1796–1809

    Article  CAS  Google Scholar 

  32. Humar B, Blair V, Charlton A, More H, Martin I, Guilford P. E-cadherin deficiency initiates gastric signet-ring cell carcinoma in mice and man. Cancer Res. 2009;69:2050–2056

    Article  CAS  Google Scholar 

  33. Romeo E, Caserta CA, Rumio C, Marcucci F. The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells. 2019;8:460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengbin Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Gao, J. & Huang, S. LncRNA SNHG7 Promotes the HCC Progression Through miR-122-5p/FOXK2 Axis. Dig Dis Sci 67, 925–935 (2022). https://doi.org/10.1007/s10620-021-06918-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-021-06918-2

Keywords

Navigation