Skip to main content

Advertisement

Log in

DLX6 Antisense RNA 1 Modulates Glucose Metabolism and Cell Growth in Gastric Cancer by Targeting microRNA-4290

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Gastric cancer (GC) is one of the most commonly diagnosed malignancy worldwide. DLX6 antisense RNA 1 (DLX6-AS1) is a long noncoding RNA (lncRNA) that exhibits oncogenic effects on multiple human carcinomas.

Aims

This study aimed to investigate the regulatory effect of DLX6-AS1 in GC progression.

Methods

The expression of DLX6-AS1 in GC tissues and cell lines was examined. The cell viability, number of clones, and apoptosis, aerobic glycolysis, and mitochondrial respiration was assessed. The effect of DLX6-AS1 on tumor growth in nude mice was also evaluated.

Results

DLX6-AS1 was overexpressed in GC tissues and cell lines. DLX6-AS1 knockdown by short hairpin RNA (shRNA) significantly inhibited cell viability and colony formation, and induced apoptosis. DLX6-AS1 silencing impaired aerobic glycolysis but stimulated mitochondrial respiration in GC cells. miR-4290 was confirmed as a downstream target of DLX6-AS1, and their expression levels were inversely correlated. GC cells expressing sh-DLX6-AS1 showed significantly lower level of 3-phosphoinositide-dependent protein kinase 1 (PDK1), a target of miR-4290, compared to cells expressing control shRNA. In addition, the suppressed GC cell malignancy upon DLX6-AS1 knockdown could be prominently reversed by PDK1 overexpression. Meanwhile, PDK1 overexpression enhanced aerobic glycolysis but repressed mitochondrial respiration under sh-DLX6-AS1 treatment. Furthermore, DLX6-AS1 knockdown significantly delayed the tumor growth in a mouse xenograft model inoculated with GC cells.

Conclusions

LncRNA DLX6-AS1 regulated tumor growth and aerobic glycolysis in GC by targeting miR-4290 and PDK1, suggesting DLX6-AS1 might serve as a novel potential therapeutic target for GC treatment from bench to clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

References

  1. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019;14:26–38. https://doi.org/10.5114/pg.2018.80001.

    Article  CAS  PubMed  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  3. Balakrishnan M, George R, Sharma A, Graham DY. Changing trends in stomach cancer throughout the world. Curr Gastroenterol Rep. 2017;19:36. https://doi.org/10.1007/s11894-017-0575-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Katai H, Ishikawa T, Akazawa K, et al. Five-year survival analysis of surgically resected gastric cancer cases in Japan: a retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer Offic J Int Gastr Cancer Assoc Jpn Gastr Cancer Assoc. 2018;21:144–154. https://doi.org/10.1007/s10120-017-0716-7.

    Article  Google Scholar 

  5. Chen LL, Carmichael GG. Long noncoding RNAs in mammalian cells: what, where, and why? Wiley Interdiscip Rev RNA. 2010;1:2–21. https://doi.org/10.1002/wrna.5.

    Article  CAS  PubMed  Google Scholar 

  6. Huarte M. The emerging role of lncRNAs in cancer. Nat Med. 2015;21:1253–1261. https://doi.org/10.1038/nm.3981.

    Article  CAS  PubMed  Google Scholar 

  7. Hao NB, He YF, Li XQ, Wang K, Wang RL. The role of miRNA and lncRNA in gastric cancer. Oncotarget. 2017;8:81572–81582. https://doi.org/10.18632/oncotarget.19197.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen JF, Wu P, Xia R, et al. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol Cancer. 2018;17:6. https://doi.org/10.1186/s12943-017-0756-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao J, Du P, Cui P, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37:4094–4109. https://doi.org/10.1038/s41388-018-0250-z.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao Y, Liu Y, Lin L, et al. The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol Cancer. 2018;17:69. https://doi.org/10.1186/s12943-018-0820-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng X, Hu Z, Ke X, et al. Long noncoding RNA DLX6-AS1 promotes renal cell carcinoma progression via miR-26a/PTEN axis. Cell Cycle (Georgetown, Tex). 2017;16:2212–2219. https://doi.org/10.1080/15384101.2017.1361072.

    Article  CAS  Google Scholar 

  12. Zhang L, He X, Jin T, Gang L, Jin Z. Long non-coding RNA DLX6-AS1 aggravates hepatocellular carcinoma carcinogenesis by modulating miR-203a/MMP-2 pathway. Biomed Pharmacother Biomed Pharmacother. 2017;96:884–891. https://doi.org/10.1016/j.biopha.2017.10.056.

    Article  CAS  PubMed  Google Scholar 

  13. Li J, Li P, Zhao W, et al. Expression of long non-coding RNA DLX6-AS1 in lung adenocarcinoma. Cancer Cell Int. 2015;15:48. https://doi.org/10.1186/s12935-015-0201-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu X, Tian Y, Kuang W, Wen S, Guo W. Long non-coding RNA DLX6-AS1 silencing inhibits malignant phenotypes of gastric cancer cells. Exp Ther Med. 2019;17:4715–4722. https://doi.org/10.3892/etm.2019.7521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salehi Z, Akrami H, Sisakhtnezhad S. The effect of placenta growth factor knockdown on hsa-miR-22-3p, hsa-let-7b-3p, hsa-miR-451b, and hsa-mir-4290 expressions in MKN-45-derived gastric cancer stem-like cells. Middle East J Cancer. 2018;9:113–122.

    CAS  Google Scholar 

  16. Zhang C, Zhang CD, Ma MH, Dai DQ. Three-microRNA signature identified by bioinformatics analysis predicts prognosis of gastric cancer patients. World J Gastroenterol. 2018;24:1206–1215. https://doi.org/10.3748/wjg.v24.i11.1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang SL, Hu X, Zhang W, Tam KY. Unexpected discovery of dichloroacetate derived adenosine triphosphate competitors targeting pyruvate dehydrogenase kinase to inhibit cancer proliferation. J Med Chem. 2016;59:3562–3568. https://doi.org/10.1021/acs.jmedchem.5b01828.

    Article  CAS  PubMed  Google Scholar 

  18. Dupuy F, Tabaries S, Andrzejewski S, et al. PDK1-dependent metabolic reprogramming dictates metastatic potential in breast cancer. Cell Metab. 2015;22:577–589. https://doi.org/10.1016/j.cmet.2015.08.007.

    Article  CAS  PubMed  Google Scholar 

  19. Peng F, Wang JH, Fan WJ, et al. Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene. 2018;37:1062–1074. https://doi.org/10.1038/onc.2017.368.

    Article  CAS  PubMed  Google Scholar 

  20. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA. 2013;310:2191–2194. https://doi.org/10.1001/jama.2013.281053.

    Article  CAS  Google Scholar 

  21. Zhu Z, Friess H, Kleeff J, et al. Glypican-3 expression is markedly decreased in human gastric cancer but not in esophageal cancer. Am J Surg. 2002;184:78–83. https://doi.org/10.1016/s0002-9610(02)00884-x.

    Article  CAS  PubMed  Google Scholar 

  22. Hong X, Xu Y, Qiu X, et al. MiR-448 promotes glycolytic metabolism of gastric cancer by downregulating KDM2B. Oncotarget. 2016;7:22092–22102. https://doi.org/10.18632/oncotarget.8020.

    Article  PubMed  PubMed Central  Google Scholar 

  23. National Research Council Institute for Laboratory Animal R. Guide for the Care and Use of Laboratory Animals. Washington (DC): National Academies Press (US) Copyright 1996 by the National Academy of Sciences. All rights reserved; 1996.

  24. Alenzi FQ. Links between apoptosis, proliferation and the cell cycle. Br J Biomed Sci. 2004;61:99–102.

    Article  CAS  PubMed  Google Scholar 

  25. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–899. https://doi.org/10.1038/nrc1478.

    Article  CAS  PubMed  Google Scholar 

  26. Justus CR, Sanderlin EJ, Yang LV. Molecular connections between cancer cell metabolism and the tumor microenvironment. Int J Mol Sci. 2015;16:11055–11086. https://doi.org/10.3390/ijms160511055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 2007;4:76–84. https://doi.org/10.4161/rna.4.2.4640.

    Article  CAS  PubMed  Google Scholar 

  28. Lin MT, Song HJ, Ding XY. Long non-coding RNAs involved in metastasis of gastric cancer. World J Gastroenterol. 2018;24:3724–3737. https://doi.org/10.3748/wjg.v24.i33.3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao S, Zhao ZY, Wu R, Zhang Y, Zhang ZY. Prognostic value of long noncoding RNAs in gastric cancer: a meta-analysis. OncoTargets Therapy. 2018;11:4877–4891. https://doi.org/10.2147/ott.s169823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, NY).. 2009;324:1029–1033. https://doi.org/10.1126/science.1160809.

    Article  CAS  Google Scholar 

  31. Ngo DC, Ververis K, Tortorella SM, Karagiannis TC. Introduction to the molecular basis of cancer metabolism and the Warburg effect. Mol Biol Rep. 2015;42:819–823. https://doi.org/10.1007/s11033-015-3857-y.

    Article  CAS  PubMed  Google Scholar 

  32. Yuan LW, Yamashita H, Seto Y. Glucose metabolism in gastric cancer: the cutting-edge. World J Gastroenterol. 2016;22:2046–2059. https://doi.org/10.3748/wjg.v22.i6.2046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoon JH, Abdelmohsen K, Gorospe M. Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol. 2014;34:9–14. https://doi.org/10.1016/j.semcdb.2014.05.015.

    Article  CAS  PubMed  Google Scholar 

  34. Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA interactions. Methods Mol Biol (Clifton, NJ). 2016;1402:271–286. https://doi.org/10.1007/978-1-4939-3378-5_21.

    Article  CAS  Google Scholar 

  35. Castel P, Ellis H, Bago R, et al. PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kalpha inhibition. Cancer Cell. 2016;30:229–242. https://doi.org/10.1016/j.ccell.2016.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eser S, Reiff N, Messer M, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013;23:406–420. https://doi.org/10.1016/j.ccr.2013.01.023.

    Article  CAS  PubMed  Google Scholar 

  37. Wu YH, Chang TH, Huang YF, Chen CC, Chou CY. COL11A1 confers chemoresistance on ovarian cancer cells through the activation of Akt/c/EBPbeta pathway and PDK1 stabilization. Oncotarget. 2015;6:23748–23763. https://doi.org/10.18632/oncotarget.4250.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zhang L, Lei J, Fang ZL, Xiong JP. MiR-128b is down-regulated in gastric cancer and negatively regulates tumour cell viability by targeting PDK1/Akt/NF-kappaB axis. J Biosci. 2016;41:77–85.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

YQ and TFX conceived and designed the experiments, WS and XW analyzed and interpreted the results of the experiments, GWH, HXW and XH performed the experiments.

Corresponding author

Correspondence to Tianfang Xia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, and all authors should confirm its accuracy.

Human and animal rights statement

All experimental protocols were approved by the Ethics Committee of the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University and performed following the World Medical Association Declaration of Helsinki. All animal experimental procedures were approved by the Animal Care and Use Committee of the Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University and were performed under the Guide for the Care and Use of Laboratory Animals.

Informed consent

Written informed consent was obtained from a legally authorized representative(s) for anonymized patient information to be published in this article. All the patients signed written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Y., Song, W., Wu, X. et al. DLX6 Antisense RNA 1 Modulates Glucose Metabolism and Cell Growth in Gastric Cancer by Targeting microRNA-4290. Dig Dis Sci 66, 460–473 (2021). https://doi.org/10.1007/s10620-020-06223-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06223-4

Keywords

Navigation