Skip to main content

Advertisement

Log in

MetaDE-Based Analysis of circRNA Expression Profiles Involved in Gastric Cancer

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (circRNAs) could play carcinogenic roles in gastric cancer (GC) and have potential to be biomarkers for GC early diagnosis, which needs to be further excavated and supported by more evidence.

Aims

The study aims to identify more authentic circRNA expression profiles that could function as potential biomarkers in GC.

Methods

circRNA expression data in three microarrays were downloaded from Gene Expression Omnibus datasets. A systematic meta-analysis based on an integrated dataset pre-processed from the three microarrays was conducted to identify a panel of differentially expressed circRNAs (DEcircs) by using the metaDE package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes term enrichment were used to note the corresponding functions of DEcircs. Quantitative real-time polymerase chain reaction was applied to verify the DEcircs expression in cancer tissues and adjacent paracancerous tissues. A GC risk-related circRNAs–miRNAs–mRNAs network was further constructed and analyzed.

Results

MetaDE analysis suggested 64 DEcircs between cancer tissues and adjacent normal tissues. GO and KEGG analysis showed that the parental genes of these DEcircs were mainly associated with histone methylation, Wnt signalosome and histone methylation activity. Hsa_circ_0005927 and hsa_circ_0067934 were verified in GC tissues, and a GC risk-related network was constructed.

Conclusion

MetaDE-based circRNA expression profiles revealed a series of potential biomarkers involved in GC. Two circRNAs, hsa_circ_0005927 and hsa_circ_0067934, could be more authentic biomarkers for GC screening. The GC risk-related network of hsa_circ_0005927/hsa_circ_0067934 and their downstream targets will provide new genetic insights for GC research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data are included in the manuscript.

Abbreviations

GC:

Gastric cancer

qRT-PCR:

Quantitative real-time polymerase chain reaction

GEO:

Gene expression omnibus

FC:

Fold change

GO:

Gene ontology

KEGG:

Kyoto Encyclopedia of Genes and Genomes

References

  1. Theodoratou E, Timofeeva M, Li X, Meng X, Ioannidis JPA. Nature, nurture, and cancer risks: genetic and nutritional contributions to cancer. Ann Rev Nutr. 2017;37:293–320. https://doi.org/10.1146/annurev-nutr-071715-051004.

    Article  CAS  Google Scholar 

  2. Yuan J, Yue H, Zhang M, et al. Transcriptional profiling analysis and functional prediction of long noncoding RNAs in cancer. Oncotarget. 2016;7:8131–8142. https://doi.org/10.18632/oncotarget.6993.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA (New York, NY). 2014;20:1829–1842. https://doi.org/10.1261/rna.047126.114.

    Article  CAS  Google Scholar 

  4. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature. 2013;495:384–388. https://doi.org/10.1038/nature11993.

    Article  CAS  PubMed  Google Scholar 

  5. Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol cell. 2014;56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019.

    Article  PubMed  CAS  Google Scholar 

  6. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22:256–264. https://doi.org/10.1038/nsmb.2959.

    Article  PubMed  CAS  Google Scholar 

  7. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–2858. https://doi.org/10.1093/nar/gkw027.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu J, Liu T, Wang X, He A. Circles reshaping the RNA world: from waste to treasure. Mol Cancer. 2017;16:58. https://doi.org/10.1186/s12943-017-0630-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-type specific features of circular RNA expression. PLoS Genet.. 2013;9:e1003777. https://doi.org/10.1371/journal.pgen.1003777.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495:333–338. https://doi.org/10.1038/nature11928.

    Article  PubMed  CAS  Google Scholar 

  11. Bolha L, Ravnik-Glavac M, Glavac D. Circular RNAs: biogenesis, function, and a role as possible cancer biomarkers. Int J Genom. 2017;2017:6218353. https://doi.org/10.1155/2017/6218353.

    Article  CAS  Google Scholar 

  12. Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer. Cancer Lett. 2017;388:208–219. https://doi.org/10.1016/j.canlet.2016.12.006.

    Article  PubMed  CAS  Google Scholar 

  13. Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta Int J Clin Chem. 2015;444:132–136. https://doi.org/10.1016/j.cca.2015.02.018.

    Article  CAS  Google Scholar 

  14. Li WH, Song YC, Zhang H, et al. Decreased expression of Hsa_circ_00001649 in gastric cancer and its clinical significance. Dis Mark.. 2017;2017:4587698. https://doi.org/10.1155/2017/4587698.

    Article  CAS  Google Scholar 

  15. Shao Y, Chen L, Lu R, et al. Decreased expression of hsa_circ_0001895 in human gastric cancer and its clinical significances. Tumour Biol.. 2017;39:1010428317699125. https://doi.org/10.1177/1010428317699125.

    Article  PubMed  CAS  Google Scholar 

  16. Liang Y, Wang W, Fang C, et al. Clinical significance and diagnostic value of serum CEA, CA19-9 and CA72-4 in patients with gastric cancer. Oncotarget. 2016;7:49565–49573. https://doi.org/10.18632/oncotarget.10391.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang J, Wang D, Wan D, et al. Circular RNA In invasive and recurrent clinical nonfunctioning pituitary adenomas: expression profiles and bioinformatic analysis. World Neurosurg.. 2018;. https://doi.org/10.1016/j.wneu.2018.06.038.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhao J, Li L, Wang Q, Han H, Zhan Q, Xu M. circRNA expression profile in early-stage lung adenocarcinoma patients. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2017;44:2138–2146. https://doi.org/10.1159/000485953.

    Article  CAS  Google Scholar 

  19. Liu W, Zhang J, Zou C, et al. Microarray expression profile and functional analysis of circular RNAs in osteosarcoma. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2017;43:969–985. https://doi.org/10.1159/000481650.

    Article  CAS  Google Scholar 

  20. Ein-Dor L, Kela I, Getz G, Givol D, Domany E. Outcome signature genes in breast cancer: is there a unique set? Bioinformatics. 2005;21:171–178. https://doi.org/10.1093/bioinformatics/bth469.

    Article  PubMed  CAS  Google Scholar 

  21. Ntzani EE, Ioannidis JP. Predictive ability of DNA microarrays for cancer outcomes and correlates: an empirical assessment. Lancet. 2003;362:1439–1444. https://doi.org/10.1016/S0140-6736(03)14686-7.

    Article  PubMed  CAS  Google Scholar 

  22. Pashaei E, Pashaei E, Ahmady M, Ozen M, Aydin N. Meta-analysis of miRNA expression profiles for prostate cancer recurrence following radical prostatectomy. PLoS ONE. 2017;12:e0179543. https://doi.org/10.1371/journal.pone.0179543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wang X, Kang DD, Shen K, et al. An R package suite for microarray meta-analysis in quality control, differentially expressed gene analysis and pathway enrichment detection. Bioinformatics. 2012;28:2534–2536. https://doi.org/10.1093/bioinformatics/bts485.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lu S, Li J, Song C, Shen K, Tseng GC. Biomarker detection in the integration of multiple multi-class genomic studies. Bioinformatics. 2010;26:333–340. https://doi.org/10.1093/bioinformatics/btp669.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao R, Ni J, Lu S, et al. CircUBAP2-mediated competing endogenous RNA network modulates tumorigenesis in pancreatic adenocarcinoma. Aging. 2019;11:8484. https://doi.org/10.18632/aging.102334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhong Y, Du Y, Yang X, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression. Mol Cancer. 2018;17:79. https://doi.org/10.1186/s12943-018-0827-8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang X, Lin Y, Song C, Sibille E, Tseng GC. Detecting disease-associated genes with confounding variable adjustment and the impact on genomic meta-analysis: with application to major depressive disorder. BMC Bioinf. 2012;13:52. https://doi.org/10.1186/1471-2105-13-52.

    Article  CAS  Google Scholar 

  28. Tseng GC, Ghosh D, Feingold E. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 2012;40:3785–3799. https://doi.org/10.1093/nar/gkr1265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Qi C, Hong L, Cheng Z, Yin Q. Identification of metastasis-associated genes in colorectal cancer using metaDE and survival analysis. Oncol Lett. 2016;11:568–574. https://doi.org/10.3892/ol.2015.3956.

    Article  PubMed  CAS  Google Scholar 

  30. Cheng M, An S, Li J. Identifying key genes associated with acute myocardial infarction. Medicine. 2017;96:e7741. https://doi.org/10.1097/MD.0000000000007741.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: a web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 2016;13:34–42. https://doi.org/10.1080/15476286.2015.1128065.

    Article  PubMed  Google Scholar 

  32. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13:271–282. https://doi.org/10.1038/nrg3162.

    Article  PubMed  CAS  Google Scholar 

  33. Backes C, Kehl T, Stockel D, et al. miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic acids Res. 2017;45:D90–D96. https://doi.org/10.1093/nar/gkw926.

    Article  PubMed  CAS  Google Scholar 

  34. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27:431–432. https://doi.org/10.1093/bioinformatics/btq675.

    Article  PubMed  CAS  Google Scholar 

  35. Wang J, Li H. circRNA circ_0067934 silencing inhibits the proliferation, migration and invasion of NSCLC cells and correlates with unfavorable prognosis in NSCLC. Eur Rev Med Pharmacol Sci. 2018;22:3053–3060. https://doi.org/10.26355/eurrev_201805_15063.

    Article  PubMed  CAS  Google Scholar 

  36. Zhu Q, Lu G, Luo Z, et al. circRNA circ_0067934 promotes tumor growth and metastasis in hepatocellular carcinoma through regulation of miR-1324/FZD5/Wnt/beta-catenin axis. Biochem Biophys Res Commun. 2018;497:626–632. https://doi.org/10.1016/j.bbrc.2018.02.119.

    Article  PubMed  CAS  Google Scholar 

  37. Xia W, Qiu M, Chen R, et al. Circular RNA has_circ_0067934 is upregulated in esophageal squamous cell carcinoma and promoted proliferation. Sci Rep. 2016;6:35576. https://doi.org/10.1038/srep35576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Xin J, Zhang XY, Sun DK, Tian LQ, Xu P. Up-regulated circular RNA hsa_circ_0067934 contributes to glioblastoma progression through activating PI3K-AKT pathway. Eur Rev Med Pharmacol Sci. 2019;23:3447–3454. https://doi.org/10.26355/eurrev_201904_17709.

    Article  PubMed  CAS  Google Scholar 

  39. Wang H, Yan X, Zhang H, Zhan X. circRNA circ_0067934 overexpression correlates with poor prognosis and promotes thyroid carcinoma progression. Med Sci Monit. 2019;25:1342–1349. https://doi.org/10.12659/MSM.913463.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hu C, Wang Y, Li A, Zhang J, Xue F, Zhu L. Overexpressed circ_0067934 acts as an oncogene to facilitate cervical cancer progression via the miR-545/EIF3C axis. J Cell Physiol. 2019;234:9225–9232. https://doi.org/10.1002/jcp.27601.

    Article  PubMed  CAS  Google Scholar 

  41. Zou Q, Wang T, Li B, et al. Overexpression of circ-0067934 is associated with increased cellular proliferation and the prognosis of non-small cell lung cancer. Oncol Lett. 2018;16:5551–5556. https://doi.org/10.3892/ol.2018.9357.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhou GK, Zhang GY, Yuan ZN, Pei R, Liu DM. Has_circ_0008274 promotes cell proliferation and invasion involving AMPK/mTOR signaling pathway in papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 2018;22:8772–8780. https://doi.org/10.26355/eurrev_201812_16644.

    Article  PubMed  Google Scholar 

  43. Afzali F, Salimi M. Unearthing regulatory axes of breast cancer circRNAs networks to find novel targets and fathom pivotal mechanisms. Interdiscip Sci Comput Life Sci. 2019;. https://doi.org/10.1007/s12539-019-00339-6.

    Article  Google Scholar 

  44. Deng N, Li L, Gao J, et al. Hsa_circ_0009910 promotes carcinogenesis by promoting the expression of miR-449a target IL6R in osteosarcoma. Biochem Biophys Res Commun. 2018;495:189–196. https://doi.org/10.1016/j.bbrc.2017.11.028.

    Article  PubMed  CAS  Google Scholar 

  45. Ping L, Jian-Jun C, Chu-Shu L, Guang-Hua L, Ming Z. Silencing of circ_0009910 inhibits acute myeloid leukemia cell growth through increasing miR-20a-5p. Blood Cells Mol Dis. 2019;75:41–47. https://doi.org/10.1016/j.bcmd.2018.12.006.

    Article  PubMed  CAS  Google Scholar 

  46. Liu M, Liu KD, Zhang L, et al. Circ_0009910 regulates growth and metastasis and is associated with poor prognosis in gastric cancer. Eur Rev Med Pharmacol Sci. 2018;22:8248–8256. https://doi.org/10.26355/eurrev_201812_16519.

    Article  PubMed  CAS  Google Scholar 

  47. Guo JN, Li J, Zhu CL, et al. Comprehensive profile of differentially expressed circular RNAs reveals that hsa_circ_0000069 is upregulated and promotes cell proliferation, migration, and invasion in colorectal cancer. Onco Targets Therapy. 2016;9:7451–7458. https://doi.org/10.2147/OTT.S123220.

    Article  CAS  Google Scholar 

  48. Bian L, Zhi X, Ma L, et al. Hsa_circRNA_103809 regulated the cell proliferation and migration in colorectal cancer via miR-532-3p/FOXO4 axis. Biochem Biophys Res Commun. 2018;505:346–352. https://doi.org/10.1016/j.bbrc.2018.09.073.

    Article  PubMed  CAS  Google Scholar 

  49. Hao S, Lv J, Yang Q, et al. Identification of key genes and circular RNAs in human gastric cancer. Med Sci Monit Int Med J Exp Clin Res. 2019;25:2488–2504. https://doi.org/10.12659/msm.915382.

    Article  CAS  Google Scholar 

  50. Li T, Shao Y, Fu L, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berlin, Germany). 2018;96:85–96. https://doi.org/10.1007/s00109-017-1600-y.

    Article  CAS  Google Scholar 

  51. Iparraguirre L, Munoz-Culla M, Prada-Luengo I, Castillo-Trivino T, Olascoaga J, Otaegui D. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet. 2017;26:3564–3572. https://doi.org/10.1093/hmg/ddx243.

    Article  PubMed  CAS  Google Scholar 

  52. Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens (New York, NY: 1993). 2017;39:454–459. https://doi.org/10.1080/10641963.2016.1273944.

    Article  CAS  Google Scholar 

  53. Mao J, Fan S, Ma W, et al. Roles of Wnt/beta-catenin signaling in the gastric cancer stem cells proliferation and salinomycin treatment. Cell Death Dis. 2014;5:e1039. https://doi.org/10.1038/cddis.2013.515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Song X, Xin N, Wang W, Zhao C. Wnt/beta-catenin, an oncogenic pathway targeted by H. pylori in gastric carcinogenesis. Oncotarget. 2015;6:35579–35588. https://doi.org/10.18632/oncotarget.5758.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wan L, Zhang L, Fan K, Cheng ZX, Sun QC, Wang JJ. Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/beta-catenin pathway. BioMed Res Int. 2016;2016:1579490. https://doi.org/10.1155/2016/1579490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Patel TN, Roy S, Ravi R. Gastric cancer and related epigenetic alterations. Ecancermedicalscience. 2017;11:714. https://doi.org/10.3332/ecancer.2017.714.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Du Y, Jiang B, Song S, et al. Metadherin regulates actin cytoskeletal remodeling and enhances human gastric cancer metastasis via epithelial-mesenchymal transition. Int J Oncol. 2017;51:63–74. https://doi.org/10.3892/ijo.2017.4002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Xu X, Jia SZ, Dai Y, et al. The relationship of circular RNAs with ovarian endometriosis. Reprod Sci (Thousand Oaks, Calif). 2018;2018:1933719118759439. https://doi.org/10.1177/1933719118759439.

    Article  CAS  Google Scholar 

  59. Sun T, Du W, Xiong H, et al. TMEFF2 deregulation contributes to gastric carcinogenesis and indicates poor survival outcome. Clin Cancer Res. 2014;20:4689–4704. https://doi.org/10.1158/1078-0432.CCR-14-0315.

    Article  PubMed  CAS  Google Scholar 

  60. Cai W, Chen G, Luo Q, et al. PMP22 regulates self-renewal and chemoresistance of gastric cancer cells. Mol Cancer Therap. 2017;16:1187–1198. https://doi.org/10.1158/1535-7163.MCT-16-0750.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Nature Science Foundation of China (Ref No. 81772987) and Natural Science Foundation of Liaoning Province in China (Ref No. 20170540987).

Funding

This work is supported partly by grants from the National Nature Science Foundation of China (Ref No. 81772987) and Natural Science Foundation of Liaoning Province in China (Ref No. 20170540987).

Author information

Authors and Affiliations

Authors

Contributions

YY and QX provided direction and guidance throughout the preparation of this manuscript. DH and WB performed data extraction and analysis. DH performed experiments and drafted the manuscript. LZ corrected the grammatical errors in this article. YY reviewed the manuscript and made significance revisions on the drafts. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yuan Yuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors approved publication of the manuscript.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Hx., Xu, Q., Wang, Bg. et al. MetaDE-Based Analysis of circRNA Expression Profiles Involved in Gastric Cancer. Dig Dis Sci 65, 2884–2895 (2020). https://doi.org/10.1007/s10620-019-06014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-06014-6

Keywords

Navigation