Skip to main content
Log in

Diagnosis of Pre-HCC Disease by Hepatobiliary-Specific Contrast-Enhanced Magnetic Resonance Imaging: A Review

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

We first proposed a new concept, pre-hepatocellular carcinoma (HCC) disease, to describe the precancerous condition of HCC, which has received scant attention from clinicians. Pre-HCC disease is defined as chronic liver injury concurrent with hepatic low- or high-grade dysplastic nodular lesions. Precise diagnosis of pre-HCC disease may prevent or arrest HCC and contribute to relieving the HCC burden worldwide, although noninvasive diagnosis is difficult and biopsy is generally required. Fortunately, recent advances and extensive applications of hepatobiliary-specific contrast-enhanced magnetic resonance imaging will facilitate the noninvasive identification and characterization of pre-HCC disease. This review briefly discusses the new concept of pre-HCC disease and offers an overview of the role of hepatobiliary-specific contrast-enhanced magnetic resonance imaging for the diagnosis of pre-HCC disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Forner A, Reig M, Bruix J. Hepatocellular carcinoma. The Lancet. 2018;391:1301–1314.

    Google Scholar 

  2. Liu Z, Jiang Y, Yuan H, et al. The trends in incidence of primary liver cancer caused by specific etiologies: results from the Global Burden of Disease Study 2016 and implications for liver cancer prevention. J Hepatol. 2019;70:674–683.

    PubMed  Google Scholar 

  3. Singal AG, Pillai A, Tiro J. Early detection, curative treatment, and survival rates for hepatocellular carcinoma surveillance in patients with cirrhosis: a meta-analysis. PLoS Med. 2014;11:e1001624.

    PubMed  PubMed Central  Google Scholar 

  4. Roayaie S, Obeidat K, Sposito C, et al. Resection of hepatocellular cancer ≤ 2 cm: results from two western centers. Hepatology. 2013;57:1426–1435.

    PubMed  Google Scholar 

  5. Burt RW, Cannon JA, David DS, et al. Colorectal cancer screening. J Natl Compr Cancer Netw JNCCN. 2013;11:1538–1575.

    CAS  Google Scholar 

  6. Yang Y, Feng Y, Zhao X, et al. A new concept: pre-HCC disease. Hepatology. 2018;68:1662.

    PubMed  Google Scholar 

  7. Libbrecht L, Desmet V, Roskams T. Preneoplastic lesions in human hepatocarcinogenesis. Liver Int Off J Int Assoc Study Liver. 2005;25:16–27.

    CAS  Google Scholar 

  8. International Working Party. Terminology of nodular hepatocellular lesions. Hepatology. 1995;22:983–993.

    Google Scholar 

  9. Calvisi DF, Wang C, Ho C, et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology. 2011;140:1071–1083.

    CAS  PubMed  Google Scholar 

  10. Kew MC. Hepatic iron overload and hepatocellular carcinoma. Cancer Lett. 2009;286:38–43.

    CAS  PubMed  Google Scholar 

  11. Choi BI, Lee JM, Kim TK, Burgio MD, Vilgrain V. Diagnosing borderline hepatic nodules in hepatocarcinogenesis: imaging performance. Am J Roentgenol. 2015;205:10–21.

    Google Scholar 

  12. Niu ZS, Niu XJ, Wang WH, Zhao J. Latest developments in precancerous lesions of hepatocellular carcinoma. World J Gastroenterol. 2016;22:3305–3314.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Borzio M, Fargion S, Borzio F, et al. Impact of large regenerative, low grade and high grade dysplastic nodules in hepatocellular carcinoma development. J Hepatol. 2003;39:208–214.

    PubMed  Google Scholar 

  14. Sato T, Kondo F, Ebara M, et al. Natural history of large regenerative nodules and dysplastic nodules in liver cirrhosis: 28-year follow-up study. Hepatol Int. 2015;9:330–336.

    PubMed  Google Scholar 

  15. Kobayashi M, Ikeda K, Hosaka T, et al. Dysplastic nodules frequently develop into hepatocellular carcinoma in patients with chronic viral hepatitis and cirrhosis. Cancer. 2006;106:636–647.

    PubMed  Google Scholar 

  16. Schölmerich J, Schacherer D. Diagnostic biopsy for hepatocellular carcinoma in cirrhosis: useful, necessary, dangerous, or academic sport? Gut. 2004;53:1224–1226.

    PubMed  PubMed Central  Google Scholar 

  17. Russo FP, Imondi A, Lynch EN, Farinati F. When and how should we perform a biopsy for HCC in patients with liver cirrhosis in 2018? A review. Dig Liver Dis. 2018;50:640–646.

    PubMed  Google Scholar 

  18. Lee YJ, Lee JM, Lee JS, et al. Hepatocellular carcinoma: diagnostic performance of multidetector CT and MR imaging-a systematic review and meta-analysis. Radiology. 2015;275:97–109.

    PubMed  Google Scholar 

  19. Guo J, Seo Y, Ren S, et al. Diagnostic performance of contrast-enhanced multidetector computed tomography and gadoxetic acid disodium-enhanced magnetic resonance imaging in detecting hepatocellular carcinoma: direct comparison and a meta-analysis. Abdom Radiol (N Y). 2016;41:1960–1972.

    Google Scholar 

  20. Kierans AS, Kang SK, Rosenkrantz AB. The diagnostic performance of dynamic contrast-enhanced mr imaging for detection of small hepatocellular carcinoma measuring up to 2 cm: a meta-analysis. Radiology. 2016;278:82–94.

    PubMed  Google Scholar 

  21. Van Beers BE, Pastor CM, Hussain HK. Primovist, eovist: What to expect? J Hepatol. 2012;57:421–429.

    PubMed  Google Scholar 

  22. Thian YL, Riddell AM, Koh DM. Liver-specific agents for contrast-enhanced MRI: role in oncological imaging. Cancer Imaging Off Publ Int Cancer Imaging Soc. 2013;13:567–579.

    Google Scholar 

  23. Reimer P, Schneider G, Schima W. Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiol. 2004;14:559–578.

    PubMed  Google Scholar 

  24. Vilgrain V, Van Beers BE, Pastor CM. Insights into the diagnosis of hepatocellular carcinomas with hepatobiliary MRI. J Hepatol. 2016;64:708–716.

    PubMed  Google Scholar 

  25. Huppertz A, Balzer T, Blakeborough A, et al. Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology. 2004;230:266–275.

    PubMed  Google Scholar 

  26. Choi JY, Lee JM, Sirlin CB. CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology. 2014;273:30–50.

    PubMed  Google Scholar 

  27. Kim BR, Lee JM, Lee DH, et al. Diagnostic performance of gadoxetic acid-enhanced liver MR imaging versus multidetector CT in the detection of dysplastic nodules and early hepatocellular carcinoma. Radiology. 2017;285:134–146.

    PubMed  Google Scholar 

  28. Golfieri R, Renzulli M, Lucidi V, Corcioni B, Trevisani F, Bolondi L. Contribution of the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI to dynamic MRI in the detection of hypovascular small (≥ 2 cm) HCC in cirrhosis. Eur Radiol. 2011;21:1233–1242.

    PubMed  Google Scholar 

  29. Filippone A, Cianci R, Patriarca G, Sabatino F, Tartaro A, Cotroneo AR. The value of gadoxetic acid-enhanced hepatospecific phase MR imaging for characterization of hepatocellular nodules in the cirrhotic liver. Eur J Clin Med Oncol. 2010;2:1.

    Google Scholar 

  30. An C, Park MS, Jeon HM, et al. Prediction of the histopathological grade of hepatocellular carcinoma using qualitative diffusion-weighted, dynamic, and hepatobiliary phase MRI. Eur Radiol. 2012;22:1701–1708.

    PubMed  Google Scholar 

  31. Lee MH, Kim SH, Park MJ, Park CK, Rhim H. Gadoxetic acid-enhanced hepatobiliary phase MRI and high-b-value diffusion-weighted imaging to distinguish well-differentiated hepatocellular carcinomas from benign nodules in patients with chronic liver disease. AJR Am J Roentgenol. 2011;197:W868–W875.

    PubMed  Google Scholar 

  32. Xu PJ, Yan FH, Wang JH, Shan Y, Ji Y, Chen CZ. Contribution of diffusion-weighted magnetic resonance imaging in the characterization of hepatocellular carcinomas and dysplastic nodules in cirrhotic liver. J Comput Assist Tomogr. 2010;34:506–512.

    PubMed  Google Scholar 

  33. Le Moigne F, Durieux M, Bancel B, et al. Impact of diffusion-weighted MR imaging on the characterization of small hepatocellular carcinoma in the cirrhotic liver. Magn Reson Imaging. 2012;30:656–665.

    PubMed  Google Scholar 

  34. Zhang J, Krinsky GA. Iron-containing nodules of cirrhosis. NMR Biomed. 2004;17:459–464.

    PubMed  Google Scholar 

  35. Kitao A, Matsui O, Yoneda N, et al. The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiol. 2011;21:2056–2066.

    PubMed  Google Scholar 

  36. Quaia E, De Paoli L, Pizzolato R, et al. Predictors of dysplastic nodule diagnosis in patients with liver cirrhosis on unenhanced and gadobenate dimeglumine-enhanced MRI with dynamic and hepatobiliary phase. AJR Am J Roentgenol. 2013;200:553–562.

    PubMed  Google Scholar 

  37. Gatto A, De Gaetano AM, Giuga M, et al. Differentiating hepatocellular carcinoma from dysplastic nodules at gadobenate dimeglumine-enhanced hepatobiliary-phase magnetic resonance imaging. Abdom Imaging. 2013;38:736–744.

    CAS  PubMed  Google Scholar 

  38. Bartolozzi C, Battaglia V, Bargellini I, et al. Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging. 2013;38:290–296.

    PubMed  Google Scholar 

  39. Shin SK, Kim YS, Choi SJ, et al. haracterization of small (≤ 3 cm) hepatic lesions with atypical enhancement feature and hypointensity in hepatobiliary phase of gadoxetic acid-enhanced MRI in cirrhosis: a STARD-compliant article. Medicine. 2017;96:e7278.

    PubMed  PubMed Central  Google Scholar 

  40. Yoon JH, Lee JM, Yang HK, et al. Non-hypervascular hypointense nodules ≥ 1 cm on the hepatobiliary phase of gadoxetic acid-enhanced magnetic resonance imaging in cirrhotic livers. Dig Dis (Basel, Switzerland). 2014;32:678–689.

    Google Scholar 

  41. Renzulli M, Biselli M, Brocchi S, et al. New hallmark of hepatocellular carcinoma, early hepatocellular carcinoma and high-grade dysplastic nodules on Gd-EOB-DTPA MRI in patients with cirrhosis: a new diagnostic algorithm. Gut. 2018;67:1674–1682.

    CAS  PubMed  Google Scholar 

  42. Hwang J, Kim YK, Jeong WK, Choi D, Rhim H, Lee WJ. Nonhypervascular hypointense nodules at gadoxetic acid-enhanced MR imaging in chronic liver disease: diffusion-weighted imaging for characterization. Radiology. 2015;276:137–146.

    PubMed  Google Scholar 

  43. Zech CJ, Grazioli L, Breuer J, Reiser MF, Schoenberg SO. Diagnostic performance and description of morphological features of focal nodular hyperplasia in Gd-EOB-DTPA-enhanced liver magnetic resonance imaging: results of a multicenter trial. Investig Radiol. 2008;43:504–511.

    Google Scholar 

  44. van Kessel CS, de Boer E, ten Kate FJ, Brosens LA, Veldhuis WB, van Leeuwen MS. Focal nodular hyperplasia: hepatobiliary enhancement patterns on gadoxetic-acid contrast-enhanced MRI. Abdom Imaging. 2013;38:490–501.

    PubMed  Google Scholar 

  45. Purysko AS, Remer EM, Coppa CP, Obuchowski NA, Schneider E, Veniero JC. Characteristics and distinguishing features of hepatocellular adenoma and focal nodular hyperplasia on gadoxetate disodium-enhanced MRI. Am J Roentgenol. 2012;198:115–123.

    Google Scholar 

  46. de Buy Wenniger LM, Terpstra V, Beuers U. Focal nodular hyperplasia and hepatic adenoma: epidemiology and pathology. Dig Surg. 2010;27:24–31.

    Google Scholar 

  47. Suh CH, Kim KW, Kim GY, Shin YM, Kim PN, Park SH. The diagnostic value of Gd-EOB-DTPA-MRI for the diagnosis of focal nodular hyperplasia: a systematic review and meta-analysis. Eur Radiol. 2015;25:950–960.

    PubMed  Google Scholar 

  48. Giannitrapani L, Soresi M, La Spada E, Cervello M, D’Alessandro N, Montalto G. Sex hormones and risk of liver tumor. Ann N Y Acad Sci. 2006;1089:228–236.

    CAS  PubMed  Google Scholar 

  49. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145:1215–1229.

    CAS  PubMed  Google Scholar 

  50. Peporte AR, Sommer WH, Nikolaou K, Reiser MF, Zech CJ. Imaging features of intrahepatic cholangiocarcinoma in Gd-EOB-DTPA-enhanced MRI. Eur J Radiol. 2013;82:e101–e106.

    PubMed  Google Scholar 

  51. Kang Y, Lee JM, Kim SH, Han JK, Choi BI. Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology. 2012;264:751–760.

    PubMed  Google Scholar 

  52. Fábrega-Foster K, Ghasabeh MA, Pawlik TM, Kamel IR. Multimodality imaging of intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2017;6:67–78.

    PubMed  PubMed Central  Google Scholar 

  53. Martín J, Sentís M, Zidan A, et al. Fatty metamorphosis of hepatocellular carcinoma: detection with chemical shift gradient-echo MR imaging. Radiology. 1995;195:125–130.

    PubMed  Google Scholar 

  54. Ozturk K, Soylu E, Yazici Z, Ozkaya G, Savci G. Differentiation of hepatocellular carcinoma from non-hepatocellular malignant tumours of liver by chemical-shift MRI at 3 T. Clin Radiol. 2019;74:797–804.

    CAS  PubMed  Google Scholar 

  55. Eguchi A, Nakashima O, Okudaira S, Sugihara S, Kojiro M. Adenomatous hyperplasia in the vicinity of small hepatocellular carcinoma. Hepatology (Baltimore, Md.). 1992;15:843–848.

    CAS  Google Scholar 

  56. International Consensus Group for Hepatocellular Neoplasia. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology (Baltimore, Md.). 2009;49:658–664.

    Google Scholar 

  57. Soper R, Himmelreich U, Painter D, et al. Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy. Pathology. 2002;34:417–422.

    PubMed  Google Scholar 

  58. Yang Z, Sun S, Chen Y, Li R. Application of single voxel 1H magnetic resonance spectroscopy in hepatic benign and malignant lesions. Med Sci Monit. 2016;22:5003–5010.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. ter Voert EG, Heijmen L, van Laarhoven HW, Heerschap A. In vivo magnetic resonance spectroscopy of liver tumors and metastases. World J. Gastroenterol. 2011;17:5133–5149.

    PubMed  PubMed Central  Google Scholar 

  60. Gore JC, Zu Z, Wang P, et al. “Molecular” MR imaging at high fields. Magn Reson Imaging. 2017;38:95–100.

    CAS  PubMed  Google Scholar 

  61. Dai Y, Zeng M, Li R, et al. Improving detection of siderotic nodules in cirrhotic liver with a multi-breath-hold susceptibility-weighted imaging technique. J Magn Reson Imaging JMRI. 2011;34:318–325.

    PubMed  Google Scholar 

  62. Li RK, Zeng MS, Qiang JW, et al. Improving detection of iron deposition in cirrhotic liver using susceptibility-weighted imaging with emphasis on histopathological correlation. J Comput Assist Tomogr. 2017;41:18–24.

    PubMed  Google Scholar 

  63. Terada T, Kadoya M, Nakanuma Y, Matsui O. Iron-accumulating adenomatous hyperplastic nodule with malignant foci in the cirrhotic liver Histopathologic, quantitative iron, and magnetic resonance imaging in vitro studies. Cancer. 1990;65:1994–2000.

    CAS  PubMed  Google Scholar 

  64. Xu H, Xie JX, Li X, et al. Perfusion-weighted MRI in evaluating the intranodular hemodynamic characteristics of dysplastic nodules and hepatocellular carcinomas in an experimental rat model. J Magn Reson Imaging JMRI. 2008;27:102–109.

    PubMed  Google Scholar 

  65. Thng CH, Koh TS, Collins DJ, Koh DM. Perfusion magnetic resonance imaging of the liver. World J Gastroenterol. 2010;16:1598–1609.

    PubMed  PubMed Central  Google Scholar 

  66. Guan S, Zhao WD, Zhou KR, Peng WJ, Tang F, Mao J. Assessment of hemodynamics in precancerous lesion of hepatocellular carcinoma: evaluation with MR perfusion. World J Gastroenterol. 2007;13:1182–1186.

    PubMed  PubMed Central  Google Scholar 

  67. Chen J, Chen C, Xia C, et al. Quantitative free-breathing dynamic contrast-enhanced MRI in hepatocellular carcinoma using gadoxetic acid: correlations with Ki67 proliferation status, histological grades, and microvascular density. Abdom Radiol (N Y). 2018;43:1393–1403.

    Google Scholar 

  68. Sourbron S, Sommer WH, Reiser MF, Zech CJ. Combined quantification of liver perfusion and function with dynamic gadoxetic acid-enhanced MR imaging. Radiology. 2012;263:874–883.

    PubMed  Google Scholar 

  69. Chandarana H, Block TK, Ream J, et al. Estimating liver perfusion from free-breathing continuously acquired dynamic gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced acquisition with compressed sensing reconstruction. Investig Radiol. 2015;50:88–94.

    CAS  Google Scholar 

  70. Martí-Bonmatí L, Sanz-Requena R, De Gracia BP, Carot-Sierra JM. Magnetic resonance pharmacokinetic imaging clusterization of hepatocellular carcinomas as a means to grade tumor aggressiveness. Expert Rev Gastroenterol Hepatol. 2012;6:711–716.

    PubMed  Google Scholar 

  71. Zhou Y, Jing X, Zhang X, et al. Combining the arterial phase of contrast-enhanced ultrasonography, gadoxetic acid-enhanced magnetic resonance imaging and diffusion-weighted imaging in the diagnosis of hepatic nodules ≤ 20 mm in patients with cirrhosis. Ultrasound Med Biol. 2019;45:693–701.

    PubMed  Google Scholar 

  72. Chang TS, Wu YC, Tung SY, et al. Alpha-fetoprotein measurement benefits hepatocellular carcinoma surveillance in patients with cirrhosis. Am J Gastroenterol.. 2015;110:836–844. (quiz 845).

    CAS  PubMed  Google Scholar 

  73. Tzartzeva K, Obi J, Rich NE, et al. Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis. Gastroenterology. 2018;154:1706–1718.

    CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this study was provided by the National Science Foundation of China (Nos. 81570551; 81770607) and the Key Research project of Shandong Province (No. 2016GSF201008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhu.

Ethics declarations

Conflict of interest

The authors do not have a commercial or other association with pharmaceutical companies or other parties that might pose a conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Liu, C., Qi, L. et al. Diagnosis of Pre-HCC Disease by Hepatobiliary-Specific Contrast-Enhanced Magnetic Resonance Imaging: A Review. Dig Dis Sci 65, 2492–2502 (2020). https://doi.org/10.1007/s10620-019-05981-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05981-0

Keywords

Navigation