Skip to main content

Advertisement

Log in

Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Sepsis is a life-threatening response to systemic infection. In addition to frank gastrointestinal (GI) rupture/puncture, sepsis can also be exacerbated by translocation of pathogen-associated molecular patterns (PAMPs) from the GI tract to the systemic circulation (gut origin of sepsis). In the human gut, Gram-negative bacteria and Candida albicans are abundant, along with their major PAMP components, endotoxin (LPS) and (1 → 3)-β-d-glucan (BG). Whereas the influence of LPS in bacterial sepsis has been studied extensively, exploration of the role of BG in bacterial sepsis is limited. Post-translocation, PAMPs enter the circulation through lymphatics and the portal vein, and are detoxified and then excreted via the liver and the kidney. Sepsis-induced liver and kidney injury might therefore affect the kinetics and increase circulating PAMPs. In this article, we discuss the current knowledge of the impact of PAMPs from both gut mycobiota and microbiota, including epithelial barrier function and the “gut-liver-kidney axis,” on bacterial sepsis severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315:801–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554.

    Article  PubMed  Google Scholar 

  3. Bates JM, Akerlund J, Mittge E, et al. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2:371–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294:813–818.

    Article  CAS  PubMed  Google Scholar 

  5. Hotchkiss RS, Monneret G, Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis. 2013;13:260–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baranova IN, Vishnyakova TG, Bocharov AV, et al. Class B scavenger receptor types I and II and CD36 mediate bacterial recognition and proinflammatory signaling induced by Escherichia coli, lipopolysaccharide, and cytosolic chaperonin 60. J Immunol. 2012;188:1371–1380.

    Article  CAS  PubMed  Google Scholar 

  7. Doi K, Hu X, Yuen PS, et al. AP214, an analogue of alpha-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int. 2008;73:1266–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doi K, Leelahavanichkul A, Yuen PS, et al. Animal models of sepsis and sepsis-induced kidney injury. J Clin Investig. 2009;119:2868–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Leelahavanichkul A, Bocharov AV, Kurlander R, et al. Class B scavenger receptor types I and II and CD36 targeting improves sepsis survival and acute outcomes in mice. J Immunol. 2012;188:2749–2758.

    Article  CAS  PubMed  Google Scholar 

  10. Leelahavanichkul A, Huang Y, Hu X, et al. Chronic kidney disease worsens sepsis and sepsis-induced acute kidney injury by releasing High Mobility Group Box Protein-1. Kidney Int. 2011;80:1198–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leelahavanichkul A, Worasilchai N, Wannalerdsakun S, et al. Gastrointestinal leakage detected by serum (1 ⟶ 3)-beta-d-glucan in mouse models and a pilot study in patients with sepsis. Shock. 2016;46:506–518.

    Article  CAS  PubMed  Google Scholar 

  12. Leelahavanichkul A, Yasuda H, Doi K, et al. Methyl-2-acetamidoacrylate, an ethyl pyruvate analog, decreases sepsis-induced acute kidney injury in mice. Am J Physiol Renal Physiol. 2008;295:F1825–F1835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Panpetch W, Somboonna N, Bulan DE, et al. Gastrointestinal colonization of Candida albicans increases serum (1 ⟶ 3)-beta-d-glucan, without candidemia, and worsens cecal ligation and puncture sepsis in murine model. Shock. 2018;49:62–70.

    Article  CAS  PubMed  Google Scholar 

  14. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240–273 (table of contents).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Helander HF, Fandriks L. Surface area of the digestive tract—revisited. Scand J Gastroenterol. 2014;49:681–689.

    Article  PubMed  Google Scholar 

  16. Sertaridou E, Papaioannou V, Kolios G, et al. Gut failure in critical care: old school versus new school. Ann Gastroenterol. 2015;28:309–322.

    PubMed  PubMed Central  Google Scholar 

  17. Carrico CJ, Meakins JL, Marshall JC, et al. Multiple-organ-failure syndrome. Arch Surg. 1986;121:196–208.

    Article  CAS  PubMed  Google Scholar 

  18. MacFie J, O’Boyle C, Mitchell CJ, et al. Gut origin of sepsis: a prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut. 1999;45:223–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Panpetch W, Chancharoenthana W, Bootdee K, et al. Lactobacillus rhamnosus L34 attenuates gut translocation-induced bacterial sepsis in murine models of leaky gut. Infect Immun. 2018;86. https://doi.org/10.1128/IAI.00700-17.

  20. Schmid-Schonbein GW, Chang M. The autodigestion hypothesis for shock and multi-organ failure. Ann Biomed Eng. 2014;42:405–414.

    Article  PubMed  Google Scholar 

  21. Wang GJ, Gao CF, Wei D, et al. Acute pancreatitis: etiology and common pathogenesis. World J Gastroenterol. 2009;15:1427–1430.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reintam A, Parm P, Kitus R, et al. Gastrointestinal symptoms in intensive care patients. Acta Anaesthesiol Scand. 2009;53:318–324.

    Article  CAS  PubMed  Google Scholar 

  23. Fink MP. Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med. 1991;19:627–641.

    Article  CAS  PubMed  Google Scholar 

  24. Sauerwein H, van Schijndel RS. Perspective: how to evaluate studies on peri-operative nutrition? Considerations about the definition of optimal nutrition for patients and its key role in the comparison of the results of studies on nutritional intervention. Clin Nutr. 2007;26:154–158.

    Article  CAS  PubMed  Google Scholar 

  25. Doig CJ, Sutherland LR, Sandham JD, et al. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am J Respir Crit Care Med. 1998;158:444–451.

    Article  CAS  PubMed  Google Scholar 

  26. Tap J, Mondot S, Levenez F, et al. Towards the human intestinal microbiota phylogenetic core. Environ Microbiol. 2009;11:2574–2584.

    Article  PubMed  Google Scholar 

  27. McKenney ES, Kendall MM. Microbiota and pathogen ‘pas de deux’: setting up and breaking down barriers to intestinal infection. Pathog Dis. 2016;74:ftw051. https://doi.org/10.1093/femspd/ftw051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cabrera-Perez J, Badovinac VP, Griffith TS. Enteric immunity, the gut microbiome, and sepsis: rethinking the germ theory of disease. Exp Biol Med (Maywood). 2017;242:127–139.

    Article  CAS  Google Scholar 

  29. Turnbaugh PJ, Backhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3:213–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Krezalek MA, DeFazio J, Zaborina O, et al. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock. 2016;45:475–482.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dollive S, Chen YY, Grunberg S, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PLoS ONE. 2013;8:e71806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frank DN, St Amand AL, Feldman RA, et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hallen-Adams HE, Suhr MJ. Fungi in the healthy human gastrointestinal tract. Virulence. 2017;8:352–358.

    Article  CAS  PubMed  Google Scholar 

  34. Gouba N, Drancourt M. Digestive tract mycobiota: a source of infection. Med Mal Infect. 2015;45:9–16.

    Article  CAS  PubMed  Google Scholar 

  35. Lutzoni F, Kauff F, Cox CJ, et al. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. Am J Bot. 2004;91:1446–1480.

    Article  PubMed  Google Scholar 

  36. Samonis G, Kofteridis DP, Maraki S, et al. Levofloxacin and moxifloxacin increase human gut colonization by Candida species. Antimicrob Agents Chemother. 2005;49:5189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vardakas KZ, Michalopoulos A, Kiriakidou KG, et al. Candidaemia: incidence, risk factors, characteristics and outcomes in immunocompetent critically ill patients. Clin Microbiol Infect. 2009;15:289–292.

    Article  CAS  PubMed  Google Scholar 

  38. Qiu X, Zhang F, Yang X, et al. Changes in the composition of intestinal fungi and their role in mice with dextran sulfate sodium-induced colitis. Sci Rep. 2015;5:10416.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336:1314–1317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamaguchi N, Sonoyama K, Kikuchi H, et al. Gastric colonization of Candida albicans differs in mice fed commercial and purified diets. J Nutr. 2005;135:109–115.

    Article  CAS  PubMed  Google Scholar 

  41. Samonis G, Maraki S, Barbounakis E, et al. Effects of vancomycin, teicoplanin, linezolid, quinupristin-dalfopristin, and telithromycin on murine gut colonization by Candida albicans. Med Mycol. 2006;44:193–196.

    Article  CAS  PubMed  Google Scholar 

  42. Magill SS, Edwards JR, Bamberg W, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med. 2014;370:1198–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kett DH, Azoulay E, Echeverria PM, et al. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39:665–670.

    Article  PubMed  Google Scholar 

  44. Hedderwick SA, Lyons MJ, Liu M, et al. Epidemiology of yeast colonization in the intensive care unit. Eur J Clin Microbiol Infect Dis. 2000;19:663–670.

    Article  CAS  PubMed  Google Scholar 

  45. Kumamoto CA. Inflammation and gastrointestinal Candida colonization. Curr Opin Microbiol. 2011;14:386–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miranda L, Van Der Heijden I, Costa S, et al. Candida colonisation as a source for candidaemia. J Hosp Infect. 2009;72:9–16.

    Article  CAS  PubMed  Google Scholar 

  47. Kollef M, Micek S, Hampton N, et al. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012;54:1739–1746.

    Article  CAS  PubMed  Google Scholar 

  48. Lau AF, Kabir M, Chen SC, et al. Candida colonization as a risk marker for invasive candidiasis in mixed medical-surgical ICUs: development and evaluation of a simple, standard protocol. J Clin Microbiol. 2015;53:1324–1330.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sam QH, Chang MW, Chai LY. The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host. Int J Mol Sci. 2017;18:E330. https://doi.org/10.3390/ijms18020330.

    Article  CAS  PubMed  Google Scholar 

  50. Panpetch W, Somboonna N, Bulan DE, et al. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1 → 3)-beta-D-glucan. PLoS ONE. 2017;12:1439.

    Article  CAS  Google Scholar 

  51. Ilan Y. Leaky gut and the liver: a role for bacterial translocation in nonalcoholic steatohepatitis. World J Gastroenterol. 2012;18:2609–2618.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Juvonen PO, Alhava EM, Takala JA. Gut permeability in patients with acute pancreatitis. Scand J Gastroenterol. 2000;35:1314–1318.

    Article  CAS  PubMed  Google Scholar 

  53. Chen K, Wang Q, Pleasants RA, et al. Empiric treatment against invasive fungal diseases in febrile neutropenic patients: a systematic review and network meta-analysis. BMC Infect Dis. 2017;17:159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Plantinga NL, de Smet A, Oostdijk EAN, et al. Selective digestive and oropharyngeal decontamination in medical and surgical ICU patients: individual patient data meta-analysis. Clin Microbiol Infect. 2018;24:505–513.

    Article  CAS  PubMed  Google Scholar 

  55. Sánchez-Ramírez C, Hípola-Escalada S, Cabrera-Santana M, et al. Long-term use of selective digestive decontamination in an ICU highly endemic for bacterial resistance. Crit Care. 2018;22:141.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Oostdijk EA, Smits L, de Smet AMG, et al. Colistin resistance in gram-negative bacteria during prophylactic topical colistin use in intensive care units. Intensive Care Med. 2013;39:653–660.

    Article  CAS  PubMed  Google Scholar 

  57. Plantinga NL, Bonten MJ. Selective decontamination and antibiotic resistance in ICUs. Crit Care. 2015;19:259.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Panpetch W, Somboonna N, Bulan DE, et al. Oral administration of live- or heat-killed Candida albicans worsened cecal ligation and puncture sepsis in a murine model possibly due to an increased serum (1 → 3)-β-D-glucan. PLoS ONE. 2017;12:e0181439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Worasilchai N, Leelahavanichkul A, Kanjanabuch T, et al. (1 → 3)-beta-d-glucan and galactomannan testing for the diagnosis of fungal peritonitis in peritoneal dialysis patients, a pilot study. Med Mycol. 2015;53:338–346.

    Article  CAS  PubMed  Google Scholar 

  60. Leelahavanichkul A, Pongpirul K, Thongbor N, et al. (1 → 3)-beta-d-glucan and galactomannan for differentiating chemical “black particles” and fungal particles inside peritoneal dialysis tubing. Perit Dial Int. 2016;36:402–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Munford RS. Endotoxemia-menace, marker, or mistake? J Leukoc Biol. 2016;100:687–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guerville M, Boudry G. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation. Am J Physiol Gastrointest Liver Physiol. 2016;311:G1–G15.

    Article  PubMed  Google Scholar 

  63. Arana DM, Prieto D, Roman E, et al. The role of the cell wall in fungal pathogenesis. Microb Biotechnol. 2009;2:308–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta. 2009;1788:832–841.

    Article  CAS  PubMed  Google Scholar 

  65. Vojdani A. For the assessment of intestinal permeability, size matters. Altern Ther Health Med. 2013;19:12–24.

    PubMed  Google Scholar 

  66. Dlugosz A, Winckler B, Lundin E, et al. No difference in small bowel microbiota between patients with irritable bowel syndrome and healthy controls. Sci Rep. 2015;5:8508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hofer U, Schlaepfer E, Baenziger S, et al. Inadequate clearance of translocated bacterial products in HIV-infected humanized mice. PLoS Pathog.. 2010;6:e1000867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ghoshal S, Witta J, Zhong J, et al. Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res. 2009;50:90–97.

    Article  CAS  PubMed  Google Scholar 

  69. Erridge C, Attina T, Spickett CM, et al. A high-fat meal induces low-grade endotoxemia: evidence of a novel mechanism of postprandial inflammation. Am J Clin Nutr. 2007;86:1286–1292.

    Article  CAS  PubMed  Google Scholar 

  70. Guler O, Ugras S, Aydin M, et al. The effect of lymphatic blockage on the amount of endotoxin in portal circulation, nitric oxide synthesis, and the liver in dogs with peritonitis. Surg Today. 1999;29:735–740.

    Article  CAS  PubMed  Google Scholar 

  71. van Deventer SJ, ten Cate JW, Tytgat GN. Intestinal endotoxemia. Clinical significance. Gastroenterology. 1988;94:825–831.

    Article  PubMed  Google Scholar 

  72. Dickson RP, Singer BH, Newstead MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome. Nat Microbiol. 2016;1:16113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Moore FA, Moore EE, Poggetti R, et al. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J Trauma. 1991;31:629–636 (discussion 36-8).

    Article  CAS  PubMed  Google Scholar 

  74. Yoshida M, Roth RI, Grunfeld C, et al. Soluble (1 → 3)-beta-d-glucan purified from Candida albicans: biologic effects and distribution in blood and organs in rabbits. J Lab Clin Med. 1996;128:103–114.

    Article  CAS  PubMed  Google Scholar 

  75. Rice PJ, Lockhart BE, Barker LA, et al. Pharmacokinetics of fungal (1-3)-beta-D-glucans following intravenous administration in rats. Int Immunopharmacol. 2004;4:1209–1215.

    Article  CAS  PubMed  Google Scholar 

  76. Hutter JC, Kim CS. Physiological-based pharmacokinetic modeling of endotoxin in the rat. Toxicol Ind Health. 2014;30:442–453.

    Article  CAS  PubMed  Google Scholar 

  77. Raggam RB, Fischbach LM, Prattes J, et al. Detection of (1 → 3)-beta-d-glucan in same-day urine and serum samples obtained from patients with haematological malignancies. Mycoses. 2015;58:394–398.

    Article  CAS  PubMed  Google Scholar 

  78. Reiser J, von Gersdorff G, Loos M, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Investig. 2004;113:1390–1397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Comper WD. Is the LPS-mediated proteinuria mouse model relevant to human kidney disease? Nat Med. 2009;15:133 (author reply-4).

    Article  CAS  PubMed  Google Scholar 

  80. Wei C, Moller CC, Altintas MM, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14:55–63.

    Article  CAS  PubMed  Google Scholar 

  81. Matsumoto T, Tanaka M, Ogata N, et al. Significance of urinary endotoxin concentration in patients with urinary tract infection. Urol Res. 1991;19:293–295.

    Article  CAS  PubMed  Google Scholar 

  82. Boelke E, Jehle PM, Storck M, et al. Urinary endotoxin excretion and urinary tract infection following kidney transplantation. Transpl Int. 2001;14:307–310.

    Article  CAS  PubMed  Google Scholar 

  83. Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012;149:1578–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sprinz H, Kundel DW, Dammin GJ, et al. The response of the germfree guinea pig to oral bacterial challenge with Escherichia coli and Shigella flexneri. Am J Pathol. 1961;39:681–695.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Sedman PC, Macfie J, Sagar P, et al. The prevalence of gut translocation in humans. Gastroenterology. 1994;107:643–649.

    Article  CAS  PubMed  Google Scholar 

  86. Heumann D, Roger T. Initial responses to endotoxins and Gram-negative bacteria. Clin Chim Acta Int J Clin Chem. 2002;323:59–72.

    Article  CAS  Google Scholar 

  87. Zou B, Jiang W. Acyloxyacyl hydrolase promotes the resolution of lipopolysaccharide-induced acute lung injury. PLoS Pathog. 2017;13:e1006436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Feulner JA, Lu M, Shelton JM, et al. Identification of acyloxyacyl hydrolase, a lipopolysaccharide-detoxifying enzyme, in the murine urinary tract. Infect Immun. 2004;72:3171–3178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lei W, Ni H, Herington J, et al. Alkaline phosphatase protects lipopolysaccharide-induced early pregnancy defects in mice. PLoS One. 2015;10:e0123243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Leelahavanichkul A, Panpetch W, Worasilchai N, et al. Evaluation of gastrointestinal leakage using serum (1 → 3)-beta-d-glucan in a Clostridium difficile murine model. FEMS Microbiol Lett. 2016;363:fnw204. https://doi.org/10.1093/femsle/fnw204.

    Article  CAS  PubMed  Google Scholar 

  91. Eggimann P, Pittet D. Candida colonization index and subsequent infection in critically ill surgical patients: 20 years later. Intensive Care Med. 2014;40:1429–1448.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Noss I, Doekes G, Thorne PS, et al. Comparison of the potency of a variety of beta-glucans to induce cytokine production in human whole blood. Innate Immun. 2013;19:10–19.

    Article  CAS  PubMed  Google Scholar 

  93. Ferwerda G, Meyer-Wentrup F, Kullberg BJ, et al. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol. 2008;10:2058–2066.

    Article  CAS  PubMed  Google Scholar 

  94. Dennehy KM, Ferwerda G, Faro-Trindade I, et al. Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol. 2008;38:500–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bolland S, Yim YS, Tus K, et al. Genetic modifiers of systemic lupus erythematosus in FcgammaRIIB(-/-) mice. J Exp Med. 2002;195:1167–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ondee T, Surawut S, Taratummarat S, et al. Fc gamma receptor IIB deficient mice: a lupus model with increased endotoxin tolerance-related sepsis susceptibility. Shock. 2017;47:743–752.

    Article  CAS  PubMed  Google Scholar 

  97. Vogelpoel LT, Hansen IS, Rispens T, et al. Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat Commun. 2014;5:5444.

    Article  CAS  PubMed  Google Scholar 

  98. Kingeter LM, Lin X. C-type lectin receptor-induced NF-kappaB activation in innate immune and inflammatory responses. Cell Mol Immunol. 2012;9:105–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karsten CM, Pandey MK, Figge J, et al. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcgammaRIIB and dectin-1. Nat Med. 2012;18:1401–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Issara-Amphorn J, Surawut S, Worasilchai N, et al. The synergy of endotoxin and (1 → 3)-beta-D-glucan, from gut translocation, worsens sepsis severity in a lupus model of fc gamma receptor IIb-deficient mice. J Innate Immun. 2018;10:189–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Netea MG, Joosten LA, Latz E, et al. Trained immunity: a program of innate immune memory in health and disease. Science (New York, NY). 2016;352:aaf1098.

    Article  CAS  Google Scholar 

  102. Bashir KM, Choi J-S. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int J Mol Sci. 2017;18:1906.

    Article  CAS  PubMed Central  Google Scholar 

  103. Strnad P, Tacke F, Koch A, et al. Liver—guardian, modifier and target of sepsis. Nat Rev Gastroenterol Hepatol. 2017;14:55–66.

    Article  CAS  PubMed  Google Scholar 

  104. Schnabl B, Brenner DA. Interactions between the intestinal microbiome and liver diseases. Gastroenterology. 2014;146:1513–1524.

    Article  CAS  PubMed  Google Scholar 

  105. Luther J, Garber JJ, Khalili H, et al. Hepatic injury in nonalcoholic steatohepatitis contributes to altered intestinal permeability. Cell Mol Gastroenterol Hepatol. 2015;1:222–232.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Acharya C, Bajaj JS. Altered microbiome in patients with cirrhosis and complications. Clin Gastroenterol Hepatol. 2018;17:307–321.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Investig. 2017;127:2829–2841.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Bajaj JS, Thacker LR, Fagan A, et al. Gut microbial RNA and DNA analysis predicts hospitalizations in cirrhosis. JCI Insight. 2018;3:98019. https://doi.org/10.1172/jci.insight.98019.

    Article  PubMed  Google Scholar 

  109. Fukui H. Gut-liver axis in liver cirrhosis: how to manage leaky gut and endotoxemia. World J Hepatol. 2015;7:425–442.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Doi K. Role of kidney injury in sepsis. J Intensive Care. 2016;4:17.

    Article  PubMed  PubMed Central  Google Scholar 

  111. White LE, Hassoun HT, Bihorac A, et al. Acute kidney injury is surprisingly common and a powerful predictor of mortality in surgical sepsis. J Trauma Acute Care Surg. 2013;75:432–438.

    Article  PubMed  Google Scholar 

  112. Hoste EA, Lameire NH, Vanholder RC, et al. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol. 2003;14:1022–1030.

    Article  PubMed  Google Scholar 

  113. Bagshaw SM, George C, Bellomo R. Early acute kidney injury and sepsis: a multicentre evaluation. Crit Care. 2008;12:R47.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Alobaidi R, Basu RK, Goldstein SL, et al. Sepsis-associated acute kidney injury. Semin Nephrol. 2015;35:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15:42–49.

    Article  CAS  PubMed  Google Scholar 

  116. Cohen G, Horl WH. Immune dysfunction in uremia—an update. Toxins (Basel). 2012;4:962–990.

    Article  CAS  Google Scholar 

  117. Le Bastard Q, Al-Ghalith GA, Gregoire M, et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment Pharmacol Ther. 2018;47:332–345.

    Article  PubMed  Google Scholar 

  118. Ramezani A, Raj DS. The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol. 2014;25:657–670.

    Article  CAS  PubMed  Google Scholar 

  119. Ramezani A, Massy ZA, Meijers B, et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483–498.

    Article  CAS  PubMed  Google Scholar 

  120. Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83:308–315.

    Article  PubMed  Google Scholar 

  121. Cummings JH. Fermentation in the human large intestine: evidence and implications for health. Lancet (London, England). 1983;1:1206–1209.

    Article  CAS  Google Scholar 

  122. de Loor H, Meijers BK, Meyer TW, et al. Sodium octanoate to reverse indoxyl sulfate and p-cresyl sulfate albumin binding in uremic and normal serum during sample preparation followed by fluorescence liquid chromatography. J Chromatogr A. 2009;1216:4684–4688.

    Article  CAS  PubMed  Google Scholar 

  123. Adesso S, Popolo A, Bianco G, et al. The uremic toxin indoxyl sulphate enhances macrophage response to LPS. PLoS ONE. 2013;8:e76778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wong J, Vilar E, Farrington K. Endotoxemia in end-stage kidney disease. Semin Dial. 2015;28:59–67.

    Article  PubMed  Google Scholar 

  125. Grant CJ, Harrison LE, Hoad CL, et al. Patients with chronic kidney disease have abnormal upper gastro-intestinal tract digestive function: a study of uremic enteropathy. J Gastroenterol Hepatol. 2017;32:372–377.

    Article  CAS  PubMed  Google Scholar 

  126. Noel S, Martina-Lingua MN, Bandapalle S, et al. Intestinal microbiota-kidney cross talk in acute kidney injury and chronic kidney disease. Nephron Clin Pract. 2014;127:139–143.

    Article  CAS  PubMed  Google Scholar 

  127. McDonald D, Ackermann G, Khailova L, et al. Extreme dysbiosis of the microbiome in critical illness. mSphere. 2016;1. https://doi.org/10.1128/mSphere.00199-16.

  128. Lobo LA, Benjamim CF, Oliveira AC. The interplay between microbiota and inflammation: lessons from peritonitis and sepsis. Clin Transl Immunol. 2016;5:e90.

    Article  CAS  Google Scholar 

  129. Vincent JL, Moreno R. Clinical review: scoring systems in the critically ill. Crit Care (London, England). 2010;14:207.

    Article  Google Scholar 

  130. Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut. 2006;55:1512–1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Paphitou NI, Ostrosky-Zeichner L, Rex JH. Rules for identifying patients at increased risk for candidal infections in the surgical intensive care unit: approach to developing practical criteria for systematic use in antifungal prophylaxis trials. Med Mycol. 2005;43:235–243.

    Article  PubMed  Google Scholar 

  132. León C, Ruiz-Santana S, Saavedra P, et al. A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006;34:730–737.

    Article  PubMed  Google Scholar 

  133. Ostrosky-Zeichner L, Sable C, Sobel J, et al. Multicenter retrospective development and validation of a clinical prediction rule for nosocomial invasive candidiasis in the intensive care setting. Eur J Clin Microbiol Infect Dis. 2007;26:271–276.

    Article  CAS  PubMed  Google Scholar 

  134. Xie G-H, Fang X-M, Fang Q, et al. Impact of invasive fungal infection on outcomes of severe sepsis: a multicenter matched cohort study in critically ill surgical patients. Crit Care. 2008;12:R5.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Pfaller MA, Messer SA, Moet GJ, et al. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents. 2011;38:65–69.

    Article  CAS  PubMed  Google Scholar 

  136. Mora-Duarte J, Betts R, Rotstein C, et al. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med. 2002;347:2020–2029.

    Article  CAS  PubMed  Google Scholar 

  137. Kuse E-R, Chetchotisakd P, da Cunha CA, et al. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: a phase III randomised double-blind trial. Lancet. 2007;369:1519–1527.

    Article  CAS  PubMed  Google Scholar 

  138. Reboli AC, Rotstein C, Pappas PG, et al. Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med. 2007;356:2472–2482.

    Article  CAS  PubMed  Google Scholar 

  139. Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45:883–893.

    Article  CAS  PubMed  Google Scholar 

  140. Betts RF, Nucci M, Talwar D, et al. A multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009;48:1676–1684.

    Article  CAS  PubMed  Google Scholar 

  141. Neofytos D, Lu K, Hatfield-Seung A, et al. Epidemiology, outcomes, and risk factors of invasive fungal infections in adult patients with acute myelogenous leukemia after induction chemotherapy. Diagn Microbiol Infect Dis. 2013;75:144–149.

    Article  PubMed  Google Scholar 

  142. Marotta F, Barreto R, Kawakita S, et al. Preventive strategy for Candida gut translocation during ischemia–reperfusion injury supervening on protein–calorie malnutrition. Chin J Dig Dis. 2006;7:33–38.

    Article  CAS  PubMed  Google Scholar 

  143. Allert S, Förster TM, Svensson C-M, et al. Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio. 2018;9:e00915–e00918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Eggimann P, Francioli P, Bille J, et al. Fluconazole prophylaxis prevents intra-abdominal candidiasis in high-risk surgical patients. Crit Care Med. 1999;27:1066–1072.

    Article  CAS  PubMed  Google Scholar 

  145. Pelz RK, Hendrix CW, Swoboda SM, et al. Double-blind placebo-controlled trial of fluconazole to prevent candidal infections in critically ill surgical patients. Ann Surg. 2001;233:542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sandven P, Qvist H, Skovlund E, et al. Significance of Candida recovered from intraoperative specimens in patients with intra-abdominal perforations. Crit Care Med. 2002;30:541–547.

    Article  PubMed  Google Scholar 

  147. Garbino J, Lew DP, Romand J-A, et al. Prevention of severe Candida infections in nonneutropenic, high-risk, critically ill patients: a randomized, double-blind, placebo-controlled trial in patients treated by selective digestive decontamination. Intensive Care Med. 2002;28:1708–1717.

    Article  PubMed  Google Scholar 

  148. Jacobs S, Evans DAP, Tariq M, et al. Fluconazole improves survival in septic shock: a randomized double-blind prospective study. Crit Care Med. 2003;31:1938–1946.

    Article  CAS  PubMed  Google Scholar 

  149. Normand S, François B, Dardé M-L, et al. Oral nystatin prophylaxis of Candida spp. colonization in ventilated critically ill patients. Intensive Care Med. 2005;31:1508–1513.

    Article  PubMed  Google Scholar 

  150. Schuster MG, Edwards JE, Sobel JD, et al. Empirical fluconazole versus placebo for intensive care unit patients: a randomized trial. Ann Intern Med. 2008;149:83–90.

    Article  PubMed  Google Scholar 

  151. Giglio M, Caggiano G, Dalfino L, et al. Oral nystatin prophylaxis in surgical/trauma ICU patients: a randomised clinical trial. Crit Care. 2012;16:R57.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Ostrosky-Zeichner L, Shoham S, Vazquez J, et al. MSG-01: a randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin Infect Dis. 2014;58:1219–1226.

    Article  CAS  PubMed  Google Scholar 

  153. Knitsch W, Vincent J-L, Utzolino S, et al. A randomized, placebo-controlled trial of preemptive antifungal therapy for the prevention of invasive candidiasis following gastrointestinal surgery for intra-abdominal infections. Clin Infect Dis. 2015;61:1671–1678.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Timsit J-F, Azoulay E, Schwebel C, et al. Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, Candida colonization, and multiple organ failure: the EMPIRICUS randomized clinical trial. JAMA. 2016;316:1555–1564.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Chulalongkorn University Office of International Affairs Scholarship for Short-term Research and Ratchadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asada Leelahavanichkul.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amornphimoltham, P., Yuen, P.S.T., Star, R.A. et al. Gut Leakage of Fungal-Derived Inflammatory Mediators: Part of a Gut-Liver-Kidney Axis in Bacterial Sepsis. Dig Dis Sci 64, 2416–2428 (2019). https://doi.org/10.1007/s10620-019-05581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-019-05581-y

Keywords

Navigation