Skip to main content

Advertisement

Log in

Redox Imbalance in Intestinal Fibrosis: Beware of the TGFβ-1, ROS, and Nrf2 Connection

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Intestinal fibrosis, a common complication of inflammatory bowel diseases, becomes clinically apparent in ~ 40% of patients with Crohn’s disease and ~ 5% of those with ulcerative colitis. Fibrosis, a consequence of local chronic inflammation, is characterized by excessive deposition of extracellular matrix (ECM) proteins by activated myofibroblasts, which are modulated by pro-fibrotic and anti-fibrotic factors. Fibrosis depends on the balance between production and degradation of ECM proteins. Although the transforming growth factor (TGF)-β1/Smad pathway is the major driving force of fibrosis, several pro-fibrogenic and anti-fibrogenic endogenous factors appear to interact directly with this pathway such as reactive oxygen species (ROS) and nuclear factor-erythroid 2-related factor 2 (Nrf2), which are connected with TGF-β1 during fibrosis development in several organs, including the intestine. Nrf2 is a ubiquitous master transcription factor that upregulates the expression of antioxidant enzymes and cytoprotective proteins mediated by antioxidant response elements (AREs). Here, I describe and discuss the links among TGF-β1, ROS, and Nrf2–AREs in the pathogenesis of intestinal fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Latella G, Di Gregorio J, Flati V, Rieder F, Lawrance IC. Mechanisms of initiation and progression of intestinal fibrosis in IBD. Scand J Gastroenterol. 2015;50:53–65.

    Article  CAS  PubMed  Google Scholar 

  2. Rieder F, Latella G, Magro F, et al. European Crohn’s and colitis organisation topical review on prediction, diagnosis and management of fibrostenosing Crohn’s disease. J Crohns Colitis. 2016;10:873–885.

    Article  PubMed  Google Scholar 

  3. Li C, Kuemmerle JF. Genetic and epigenetic regulation of intestinal fibrosis. United Eur Gastroenterol J. 2016;4:496–505.

    Article  CAS  Google Scholar 

  4. Latella G, Rogler G, Bamias G, et al. Results of the 4th scientific workshop of the ECCO (I): pathophysiology of intestinal fibrosis in IBD. J Crohns Colitis. 2014;8:1147–1165.

    Article  PubMed  Google Scholar 

  5. Rieder F, Fiocchi C, Rogler G. Mechanisms, management, and treatment of fibrosis in patients with inflammatory bowel diseases. Gastroenterology. 2017;152:340–350.

    Article  PubMed  Google Scholar 

  6. Breynaert C, de Bruyn M, Arijs I, et al. Genetic deletion of tissue inhibitor of metalloproteinase-1/TIMP-1 alters inflammation and attenuates fibrosis in dextran sodium sulphate-induced murine models of colitis. J Crohns Colitis. 2016;10:1336–1350.

    Article  PubMed  Google Scholar 

  7. de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol. 2016;51:295–358.

    Article  PubMed  Google Scholar 

  8. Richter K, Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res. 2016;365:591–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Swamy SM, Rajasekaran NS, Thannickal VJ. Nuclear factor-erythroid-2-related factor 2 in aging and lung fibrosis. Am J Pathol. 2016;186:1712–1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samarakoon R, Overstreet JM, Higgins PJ. TGF-β signaling in tissue fibrosis: redox controls, target genes and therapeutic opportunities. Cell Signal. 2013;25:264–268.

    Article  CAS  PubMed  Google Scholar 

  11. Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol. 2015;6:565–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahamed J, Laurence J. Role of platelet-derived transforming growth factor-β1 and reactive oxygen species in radiation-induced organ fibrosis. Antioxid Redox Signal. 2017;27:977–988.

    Article  CAS  PubMed  Google Scholar 

  13. Guan Y, Tan Y, Liu W, et al. NF-E2-related factor 2 suppresses intestinal fibrosis by inhibiting reactive oxygen species-dependent TGF-β1/SMADs pathway. Dig Dis Sci. (Epub ahead of print). https://doi.org/10.1007/s10620-017-4710-z.

  14. Latella G, Rieder F. Intestinal fibrosis: ready to be reversed. Curr Opin Gastroenterol. 2017;33:239–245.

    Article  PubMed  Google Scholar 

  15. Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res. 2010;690:12–23.

    Article  CAS  PubMed  Google Scholar 

  16. Sadeghi MR, Jeddi F, Soozangar N, Somi MH, Samadi N. The role of Nrf2-Keap1 axis in colorectal cancer, progression, and chemoresistance. Tumour Biol. 2017;39:1010428317705510. https://doi.org/10.1177/1010428317705510.

    Article  PubMed  Google Scholar 

  17. Gào X, Schöttker B. Reduction–oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget. 2017;8:51888–51906.

    PubMed  PubMed Central  Google Scholar 

  18. Cho HY, Kleeberger SR. Noblesse oblige: NRF2 functions in the airways. Am J Respir Cell Mol Biol. 2014;50:844–847.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta. 2017;1863:585–597.

    Article  CAS  PubMed  Google Scholar 

  20. Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2017;. https://doi.org/10.1089/ars.2017.7342.

    PubMed  Google Scholar 

  21. Wei J, Zhu H, Lord G, et al. Nrf2 exerts cell-autonomous antifibrotic effects: compromised function in systemic sclerosis and therapeutic rescue with a novel heterocyclic chalcone derivative. Transl Res. 2017;183:71–86.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Wang H, Qian C, et al. 3-(2-Oxo-2-phenylethylidene)-2,3,6,7-tetrahydro-1H-pyrazino[2,1-a]isoquinolin-4(11bH)-one (compound 1), a novel potent Nrf2/ARE inducer, protects against DSS-induced colitis via inhibiting NLRP3 inflammasome. Biochem Pharmacol. 2016;101:71–86.

    Article  CAS  PubMed  Google Scholar 

  23. Kathiria AS, Butcher MA, Hansen JM, Theiss AL. Nrf2 is not required for epithelial prohibitin-dependent attenuation of experimental colitis. Am J Physiol Gastrointest Liver Physiol. 2013;304:G885–G896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gerstgrasser A, Melhem H, Leonardi I, et al. Cell-specific activation of the Nrf2 antioxidant pathway increases mucosal inflammation in acute but not in chronic colitis. J Crohns Colitis. 2017;11:485–499.

    PubMed  Google Scholar 

  25. Barnes JL, Gorin Y. Myofibroblast differentiation during fibrosis: role of NAD(P)H oxidases. Kidney Int. 2011;79:944–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manickam N, Patel M, Griendling KK, Gorin Y, Barnes JL. RhoA/Rho kinase mediates TGF-β1-induced kidney myofibroblast activation through Poldip2/Nox4-derived reactive oxygen species. Am J Physiol Renal Physiol. 2014;307:F159–F171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou W, Mo X, Cui W, et al. Nrf2 inhibits epithelial–mesenchymal transition by suppressing snail expression during pulmonary fibrosis. Sci Rep. 2016;6:38646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang S, Kim W, Jeong S, et al. Oxidized 5-aminosalicylic acid activates Nrf2-HO-1 pathway by covalently binding to Keap 1: implication in anti-inflammatory actions of 5-aminosalicylic acid. Free Radic Biol Med. 2017;108:715–724.

    Article  CAS  PubMed  Google Scholar 

  29. Myers JN, Schäffer MW, Korolkova OY, Williams AD, Gangula PR, MʼKoma AF. Implications of the colonic deposition of free hemoglobin-α chain: a previously unknown tissue by-product in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20:1530–1547.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Osburn WO, Karim B, Dolan PM, et al. Increased colonic inflammatory injury and formation of aberrant crypt foci in Nrf2-deficient mice upon dextran sulfate treatment. Int J Cancer. 2007;121:1883–1891.

    Article  CAS  PubMed  Google Scholar 

  31. Kruse ML, Friedrich M, Arlt A, et al. Colonic lamina propria inflammatory cells from patients with IBD induce the nuclear factor-E2 related factor-2 thereby leading to greater proteasome activity and apoptosis protection in human colonocytes. Inflamm Bowel Dis. 2016;22:2593–2606.

    Article  PubMed  Google Scholar 

  32. Di Sabatino A, Jackson CL, Pickard KM, et al. Transforming growth factor beta signalling and matrix metalloproteinases in the mucosa overlying Crohn’s disease strictures. Gut. 2009;58:777–789.

    Article  PubMed  Google Scholar 

  33. Fichtner-Feigl S, Young CA, Kitani A, Geissler EK, Schlitt HJ, Strober W. IL-13 signaling via IL-13R alpha2 induces major downstream fibrogenic factors mediating fibrosis in chronic TNBS colitis. Gastroenterology. 2008;135:2003–2013.

    Article  CAS  PubMed  Google Scholar 

  34. Rieder F, Kessler S, Sans M, Fiocchi C. Animal models of intestinal fibrosis: new tools for the understanding of pathogenesis and therapy of human disease. Am J Physiol Gastrointest Liver Physiol. 2012;303:G786–G801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vallance BA, Gunawan MI, Hewlett B, et al. Collins SM.TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol. 2005;289:G116–G128.

    Article  CAS  PubMed  Google Scholar 

  36. Latella G, Vetuschi A, Sferra R, et al. Smad3 loss confers resistance to the development of trinitrobenzene sulfonic acid-induced colorectal fibrosis. Eur J Clin Investig. 2009;39:145–156.

    Article  CAS  Google Scholar 

  37. Pekow JR, Kwon JH. MicroRNAs in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:187–193.

    Article  PubMed  Google Scholar 

  38. Jiang XP, Ai WB, Wan LY, Zhang YQ, Wu JF. The roles of microRNA families in hepatic fibrosis. Cell Biosci. 2017;7:34.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zou XZ, Liu T, Gong ZC, Hu CP, Zhang Z. MicroRNAs-mediated epithelial–mesenchymal transition in fibrotic diseases. Eur J Pharmacol. 2017;796:190–206.

    Article  CAS  PubMed  Google Scholar 

  40. Guo L, Zhang Y, Zhang L, Huang F, Li J, Wang S. MicroRNAs, TGF-β signaling, and the inflammatory microenvironment in cancer. Tumour Biol. 2016;37:115–125.

    Article  CAS  PubMed  Google Scholar 

  41. Chen Y, Ge W, Xu L, et al. miR-200b is involved in intestinal fibrosis of Crohn’s disease. Int J Mol Med. 2012;29:601–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewis A, Nijhuis A, Mehta S, et al. Intestinal fibrosis in Crohn’s disease: role of microRNAs as fibrogenic modulators, serum biomarkers, and therapeutic targets. Inflamm Bowel Dis. 2015;21:1141–1150.

    Article  PubMed  Google Scholar 

  43. Giuffrida P, Pinzani M, Corazza GR, Di Sabatino A. Biomarkers of intestinal fibrosis—one step towards clinical trials for stricturing inflammatory bowel disease. United Eur Gastroenterol J. 2016;4:523–530.

    Article  CAS  Google Scholar 

  44. Nijhuis A, Biancheri P, Lewis A, et al. In Crohn’s disease fibrosis-reduced expression of the miR-29 family enhances collagen expression in intestinal fibroblasts. Clin Sci (Lond). 2014;127:341–350.

    Article  CAS  Google Scholar 

  45. Lewis A, Mehta S, Hanna LN, et al. Low serum levels of microRNA-19 are associated with a stricturing Crohn’s disease phenotype. Inflamm Bowel Dis. 2015;21:1926–1934.

    Article  PubMed  Google Scholar 

  46. Yang J, Zhou CZ, Zhu R, et al. miR-200b-containing microvesicles attenuate experimental colitis associated intestinal fibrosis by inhibiting epithelial–mesenchymal transition. J Gastroenterol Hepatol. 2017;32:1966–1974.

    Article  CAS  PubMed  Google Scholar 

  47. Zidar N, Boštjančič E, Jerala M, et al. Down-regulation of microRNAs of the miR-200 family and up-regulation of Snail and Slug in inflammatory bowel diseases: hallmark of epithelial–mesenchymal transition. J Cell Mol Med. 2016;20:1813–1820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–338.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study did not receive any extramural financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Latella.

Ethics declarations

Conflict of interest

The author has no conflicts of interest to declare and did not use any outside assistance in preparing the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latella, G. Redox Imbalance in Intestinal Fibrosis: Beware of the TGFβ-1, ROS, and Nrf2 Connection. Dig Dis Sci 63, 312–320 (2018). https://doi.org/10.1007/s10620-017-4887-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-017-4887-1

Keywords

Navigation