Skip to main content

Advertisement

Log in

Potential Role of the Microbiome in Barrett’s Esophagus and Esophageal Adenocarcinoma

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Esophageal adenocarcinoma and its precursor Barrett’s esophagus have been rapidly increasing in incidence for half a century, for reasons not adequately explained by currently identified risk factors such as gastroesophageal reflux disease and obesity. The upper gastrointestinal microbiome may represent another potential cofactor. The distal esophagus has a distinct microbiome of predominantly oral-derived flora, which is altered in Barrett’s esophagus and reflux esophagitis. Chronic low-grade inflammation or direct carcinogenesis from this altered microbiome may combine with known risk factors to promote Barrett’s metaplasia and progression to adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2014;371:2499–2509. doi:10.1056/NEJMra1314530.

    Article  PubMed  Google Scholar 

  2. Hvid-Jensen F, Pedersen L, Drewes AM, Sorensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365:1375–1383. doi:10.1056/NEJMoa1103042.

    Article  CAS  PubMed  Google Scholar 

  3. Bhat S, Coleman HG, Yousef F, et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst. 2011;103:1049–1057. doi:10.1093/jnci/djr203.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wani S, Falk G, Hall M, et al. Patients with nondysplastic Barrett’s esophagus have low risks for developing dysplasia or esophageal adenocarcinoma. Clin Gastroenterol Hepatol. 2011;9:220–227. doi:10.1016/j.cgh.2010.11.008. (quiz e26).

    Article  PubMed  Google Scholar 

  5. Pohl H, Sirovich B, Welch HG. Esophageal adenocarcinoma incidence: Are we reaching the peak? Cancer Epidemiol Biomarkers Prev. 2010;19:1468–1470. doi:10.1158/1055-9965.EPI-10-0012.

    Article  PubMed  Google Scholar 

  6. Thrift AP, Whiteman DC. The incidence of esophageal adenocarcinoma continues to rise: analysis of period and birth cohort effects on recent trends. Ann Oncol. 2012;23:3155–3162. doi:10.1093/annonc/mds181.

    Article  CAS  PubMed  Google Scholar 

  7. Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst. 2008;100:1184–1187.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abrams JA, Sharaiha RZ, Gonsalves L, Lightdale CJ, Neugut AI. Dating the rise of esophageal adenocarcinoma: analysis of Connecticut Tumor Registry data, 1940–2007. Cancer Epidemiol Biomarkers Prev. 2011;20:183–186. doi:10.1158/1055-9965.EPI-10-0802.

    Article  PubMed  Google Scholar 

  9. Hansson LE, Sparen P, Nyren O. Increasing incidence of both major histological types of esophageal carcinomas among men in Sweden. Int J Cancer. 1993;54:402–407.

    Article  CAS  PubMed  Google Scholar 

  10. Post PN, Siersema PD, Van Dekken H. Rising incidence of clinically evident Barrett’s oesophagus in The Netherlands: a nation-wide registry of pathology reports. Scand J Gastroenterol. 2007;42:17–22. doi:10.1080/00365520600815654.

    Article  PubMed  Google Scholar 

  11. Coleman HG, Bhat S, Murray LJ, McManus D, Gavin AT, Johnston BT. Increasing incidence of Barrett’s oesophagus: a population-based study. Eur J Epidemiol. 2011;26:739–745. doi:10.1007/s10654-011-9596-z.

    Article  PubMed  Google Scholar 

  12. van Soest EM, Dieleman JP, Siersema PD, Sturkenboom MC, Kuipers EJ. Increasing incidence of Barrett’s oesophagus in the general population. Gut. 2005;54:1062–1066. doi:10.1136/gut.2004.063685.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Petrick JL, Nguyen T, Cook MB. Temporal trends of esophageal disorders by age in the Cerner Health Facts database. Ann Epidemiol. 2016;26:151–154 e4. doi:10.1016/j.annepidem.2015.11.004.

    Article  PubMed  Google Scholar 

  14. Sharma P, Falk GW, Weston AP, Reker D, Johnston M, Sampliner RE. Dysplasia and cancer in a large multicenter cohort of patients with Barrett’s esophagus. Clin Gastroenterol Hepatol. 2006;4:566–572. doi:10.1016/j.cgh.2006.03.001.

    Article  PubMed  Google Scholar 

  15. den Hoed CM, van Blankenstein M, Dees J, Kuipers EJ. The minimal incubation period from the onset of Barrett’s oesophagus to symptomatic adenocarcinoma. Br J Cancer. 2011;105:200–205. doi:10.1038/bjc.2011.214.

    Article  Google Scholar 

  16. Engel LS, Chow WH, Vaughan TL, et al. Population attributable risks of esophageal and gastric cancers. J Natl Cancer Inst. 2003;95:1404–1413.

    Article  PubMed  Google Scholar 

  17. El-Serag HB. Time trends of gastroesophageal reflux disease: a systematic review. Clin Gastroenterol Hepatol. 2007;5:17–26. doi:10.1016/j.cgh.2006.09.016.

    Article  PubMed  Google Scholar 

  18. el-Serag HB, Sonnenberg A. Opposing time trends of peptic ulcer and reflux disease. Gut. 1998;43:327–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flegal KM, Carroll MD, Kuczmarski RJ, Johnson CL. Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int J Obes Relat Metab Disord. 1998;22:39–47.

    Article  CAS  PubMed  Google Scholar 

  20. Kong CY, Nattinger KJ, Hayeck TJ, et al. The impact of obesity on the rise in esophageal adenocarcinoma incidence: estimates from a disease simulation model. Cancer Epidemiol Biomarkers Prev.. 2011;20:2450–2456. doi:10.1158/1055-9965.EPI-11-0547.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giovino GA. Epidemiology of tobacco use in the United States. Oncogene. 2002;21:7326–7340. doi:10.1038/sj.onc.1205808.

    Article  CAS  PubMed  Google Scholar 

  22. Cook MB, Kamangar F, Whiteman DC, et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the international BEACON consortium. J Natl Cancer Inst. 2010;102:1344–1353. doi:10.1093/jnci/djq289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65:5–29. doi:10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  24. Lagergren K, Lindam A, Lagergren J. Dietary proportions of carbohydrates, fat, and protein and risk of oesophageal cancer by histological type. PLoS ONE. 2013;8:e54913. doi:10.1371/journal.pone.0054913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70:3–21. doi:10.1111/j.1753-4887.2011.00456.x.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Austin GL, Ogden LG, Hill JO. Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971-2006. Am J Clin Nutr. 2011;93:836–843. doi:10.3945/ajcn.110.000141.

    Article  CAS  PubMed  Google Scholar 

  27. Wright JD, Wang CY. Trends in intake of energy and macronutrients in adults from 1999–2000 through 2007–2008. NCHS Data Brief. 2010;49:1–8.

    PubMed  Google Scholar 

  28. Centers for Disease C, Prevention. Trends in intake of energy and macronutrients—United States, 1971–2000. MMWR Morb Mortal Wkly Rep. 2004;53:80–82.

    Google Scholar 

  29. Lewis K. Platforms for antibiotic discovery. Nat Rev Drug Discov. 2013;12:371–387. doi:10.1038/nrd3975.

    Article  CAS  PubMed  Google Scholar 

  30. Islami F, Kamangar F. Helicobacter pylori and esophageal cancer risk: a meta-analysis. Cancer Prev Res (Phila). 2008;1:329–338. doi:10.1158/1940-6207.CAPR-08-0109.

    Article  CAS  Google Scholar 

  31. Banatvala N, Mayo K, Megraud F, Jennings R, Deeks JJ, Feldman RA. The cohort effect and Helicobacter pylori. J Infect Dis. 1993;168:219–221.

    Article  CAS  PubMed  Google Scholar 

  32. Rehnberg-Laiho L, Rautelin H, Koskela P, et al. Decreasing prevalence of helicobacter antibodies in Finland, with reference to the decreasing incidence of gastric cancer. Epidemiol Infect. 2001;126:37–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Abreu MT, Peek RM Jr. Gastrointestinal malignancy and the microbiome. Gastroenterology. 2014;146:1534–1546.e3. doi:10.1053/j.gastro.2014.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer. 2013;13:800–812. doi:10.1038/nrc3610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fraher MH, O’Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: a guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9:312–322. doi:10.1038/nrgastro.2012.44.

    Article  CAS  PubMed  Google Scholar 

  36. Smith JL, Bayles DO. The contribution of cytolethal distending toxin to bacterial pathogenesis. Crit Rev Microbiol. 2006;32:227–248. doi:10.1080/10408410601023557.

    Article  CAS  PubMed  Google Scholar 

  37. Arthur JC, Perez-Chanona E, Muhlbauer M, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–123. doi:10.1126/science.1224820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206. doi:10.1016/j.chom.2013.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lau WF, Wong J, Lam KH, Ong GB. Oesophageal microbial flora in carcinoma of the oesophagus. Aust N Z J Surg. 1981;51:52–55.

    Article  CAS  PubMed  Google Scholar 

  40. Finlay IG, Wright PA, Menzies T, McArdle CS. Microbial flora in carcinoma of oesophagus. Thorax. 1982;37:181–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mannell A, Plant M, Frolich J. The microflora of the oesophagus. Ann R Coll Surg Engl. 1983;65:152–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Pei Z, Bini EJ, Yang L, Zhou M, Francois F, Blaser MJ. Bacterial biota in the human distal esophagus. Proc Natl Acad Sci USA. 2004;101:4250–4255. doi:10.1073/pnas.0306398101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dewhirst FE, Chen T, Izard J, et al. The human oral microbiome. J Bacteriol. 2010;192:5002–5017. doi:10.1128/JB.00542-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Osias GL, Bromer MQ, Thomas RM, et al. Esophageal bacteria and Barrett’s esophagus: a preliminary report. Dig Dis Sci. 2004;49:228–236.

    Article  PubMed  Google Scholar 

  45. Macfarlane S, Furrie E, Macfarlane GT, Dillon JF. Microbial colonization of the upper gastrointestinal tract in patients with Barrett’s esophagus. Clin Infect Dis. 2007;45:29–38. doi:10.1086/518578.

    Article  PubMed  Google Scholar 

  46. Yang L, Lu X, Nossa CW, Francois F, Peek RM, Pei Z. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome. Gastroenterology. 2009;137:588–597. doi:10.1053/j.gastro.2009.04.046.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liu N, Ando T, Ishiguro K, et al. Characterization of bacterial biota in the distal esophagus of Japanese patients with reflux esophagitis and Barrett’s esophagus. BMC Infect Dis. 2013;13:130. doi:10.1186/1471-2334-13-130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gall A, Fero J, McCoy C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort. PLoS ONE. 2015;10:e0129055. doi:10.1371/journal.pone.0129055.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Narikiyo M, Tanabe C, Yamada Y, et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers. Cancer Sci. 2004;95:569–574.

    Article  CAS  PubMed  Google Scholar 

  50. Blackett KL, Siddhi SS, Cleary S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: Association or causality? Aliment Pharmacol Ther. 2013;37:1084–1092. doi:10.1111/apt.12317.

    Article  CAS  PubMed  Google Scholar 

  51. Clarke AT, Wirz AA, Seenan JP, Manning JJ, Gillen D, McColl KE. Paradox of gastric cardia: it becomes more acidic following meals while the rest of stomach becomes less acidic. Gut. 2009;58:904–909. doi:10.1136/gut.2008.161927.

    Article  CAS  PubMed  Google Scholar 

  52. McDonald SA, Lavery D, Wright NA, Jansen M. Barrett oesophagus: lessons on its origins from the lesion itself. Nat Rev Gastroenterol Hepatol. 2015;12:50–60. doi:10.1038/nrgastro.2014.181.

    Article  PubMed  Google Scholar 

  53. Quante M, Bhagat G, Abrams JA, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell. 2012;21:36–51. doi:10.1016/j.ccr.2011.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Polk DB, Peek RM Jr. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer. 2010;10:403–414. doi:10.1038/nrc2857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rubenstein JH, Inadomi JM, Scheiman J, et al. Association between Helicobacter pylori and Barrett’s esophagus, erosive esophagitis, and gastroesophageal reflux symptoms. Clin Gastroenterol Hepatol. 2014;12:239–245. doi:10.1016/j.cgh.2013.08.029.

    Article  PubMed  Google Scholar 

  56. Bik EM, Eckburg PB, Gill SR, et al. Molecular analysis of the bacterial microbiota in the human stomach. Proc Natl Acad Sci USA. 2006;103:732–737. doi:10.1073/pnas.0506655103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tian Z, Yang Z, Gao J, Zhu L, Jiang R, Jiang Y. Lower esophageal microbiota species are affected by the eradication of infection using antibiotics. Exp Ther Med. 2015;9:685–692. doi:10.3892/etm.2015.2169.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Andersson AF, Lindberg M, Jakobsson H, Backhed F, Nyren P, Engstrand L. Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE. 2008;3:e2836. doi:10.1371/journal.pone.0002836.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li XX, Wong GL, To KF, et al. Bacterial microbiota profiling in gastritis without Helicobacter pylori infection or non-steroidal anti-inflammatory drug use. PLoS ONE. 2009;4:e7985. doi:10.1371/journal.pone.0007985.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stearns JC, Lynch MD, Senadheera DB, et al. Bacterial biogeography of the human digestive tract. Sci Rep. 2011;1:170. doi:10.1038/srep00170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maldonado-Contreras A, Goldfarb KC, Godoy-Vitorino F, et al. Structure of the human gastric bacterial community in relation to Helicobacter pylori status. ISME J. 2011;5:574–579. doi:10.1038/ismej.2010.149.

    Article  CAS  PubMed  Google Scholar 

  62. Jackson MA, Goodrich JK, Maxan ME, et al. Proton pump inhibitors alter the composition of the gut microbiota. Gut. 2015. doi:10.1136/gutjnl-2015-310861.

    PubMed  PubMed Central  Google Scholar 

  63. Freedberg DE, Toussaint NC, Chen SP, et al. Proton pump inhibitors alter specific taxa in the human gastrointestinal microbiome: a crossover trial. Gastroenterology. 2015. doi:10.1053/j.gastro.2015.06.043.

    Google Scholar 

  64. Rosen R, Amirault J, Liu H, et al. Changes in gastric and lung microflora with acid suppression: acid suppression and bacterial growth. JAMA Pediatr. 2014;168:932–937. doi:10.1001/jamapediatrics.2014.696.

    Article  PubMed  Google Scholar 

  65. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi:10.1038/nature12820.

    Article  CAS  PubMed  Google Scholar 

  66. Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146:1564–1572. doi:10.1053/j.gastro.2014.01.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schulz MD, Atay C, Heringer J, et al. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature. 2014;514:508–512. doi:10.1038/nature13398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. O’Keefe SJ, Li JV, Lahti L, et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. doi:10.1038/ncomms7342.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jiang Q, Akashi S, Miyake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol. 2000;165:3541–3544.

    Article  CAS  PubMed  Google Scholar 

  70. O’Riordan JM, Abdel-latif MM, Ravi N, et al. Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation-metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Gastroenterol. 2005;100:1257–1264. doi:10.1111/j.1572-0241.2005.41338.x.

    Article  PubMed  Google Scholar 

  71. Calatayud S, Garcia-Zaragoza E, Hernandez C, et al. Downregulation of nNOS and synthesis of PGs associated with endotoxin-induced delay in gastric emptying. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1360–G1367. doi:10.1152/ajpgi.00168.2002.

    Article  CAS  PubMed  Google Scholar 

  72. Fan YP, Chakder S, Gao F, Rattan S. Inducible and neuronal nitric oxide synthase involvement in lipopolysaccharide-induced sphincteric dysfunction. Am J Physiol Gastrointest Liver Physiol. 2001;280:G32–G42.

    CAS  PubMed  Google Scholar 

  73. Suzuki H, Iijima K, Scobie G, Fyfe V, McColl KE. Nitrate and nitrosative chemistry within Barrett’s oesophagus during acid reflux. Gut. 2005;54:1527–1535. doi:10.1136/gut.2005.066043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are supported in part by a Columbia Physicians and Surgeon’s Dean’s Research Fellowship (EJS), a mentored career development award through the National Center for Advancing Translational Sciences’ Clinical and Translational Science awards program (NIH KL2 TR000081; DEF), a U54 award from the National Cancer Institute (U54 CA163004; JAA), and an Irving Scholars Award (JAA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian A. Abrams.

Ethics declarations

Conflict of interest

The authors have no disclosures to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snider, E.J., Freedberg, D.E. & Abrams, J.A. Potential Role of the Microbiome in Barrett’s Esophagus and Esophageal Adenocarcinoma. Dig Dis Sci 61, 2217–2225 (2016). https://doi.org/10.1007/s10620-016-4155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4155-9

Keywords

Navigation