Skip to main content

Advertisement

Log in

CHST11/13 Regulate the Metastasis and Chemosensitivity of Human Hepatocellular Carcinoma Cells Via Mitogen-Activated Protein Kinase Pathway

Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Carbohydrate sulfotransferases 11–13 (CHST11–13), that catalyze the transfer of sulfate to position 4 of the GalNAc residue of chondroitin, have been implicated in various diseases.

Aim

This study aimed to clarify the association of CHST11–13 expression with metastasis and drug sensitivity in hepatocellular carcinoma (HCC) cells.

Methods

We measured the levels of CHST11 and CHST13 in a series of HCC cells using real-time PCR and Western blotting. After RNAi and forced expression treatment of CHST11 and CHST13 in MHCC97L and MHCC97H cells, metastatic potential and drug sensitivity of the two cells were investigated with ECM invasion assay, drug sensitivity assay, and in vivo antitumor activity assay. By real-time PCR and Western blotting, we explored the possible impacts of these two genes on mitogen-activated protein kinase (MAPK) signal pathway. MAPK pathway was blocked by PD98059 or SP600125 to elucidate the effects of MAPK pathway on metastasis and chemosensitivity.

Results

Significantly reduced levels of CHST11 and CHST13 were observed in highly invasive MHCC97H cells compared with those of MHCC97L cell line with low metastatic potential. Decreased or forced expression of CHST11 and CHST13 altered metastatic potential and drug sensitivity of MHCC97L and MHCC97H cells. Remarkable alteration of MAPK activity was shown in two HCC cells with genetic manipulation. Conversely, pharmacologic inhibition of the MAPK pathway suppressed invasive potential and rescued drug sensitivity of MHCC97H cells.

Conclusions

Our results have demonstrated that CHST11 and CHST13 negatively modulate metastasis and drug resistance of HCC cells probably via oncogenic MAPK signal pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

CHST11–13:

Carbohydrate sulfotransferases 11–13 (CHST11–13)

HCC:

Hepatocellular carcinoma

CS:

Chondroitin sulfate

GAG:

Glycosaminoglycan

C4ST1, 2, 3:

Chondroitin-4-O-sulfotransferase-1, 2, 3

GalNAc:

N-acetylgalactosamine

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-related kinases

JNK:

JunNH2-terminal kinases

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

PCR:

Polymerase chain reaction

shRNA:

Short hairpin RNA

MMP-2:

Matrix metalloproteinase 2

References

  1. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–1236.

    Article  PubMed  Google Scholar 

  2. Martin TA, Jiang WG. Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta. 2009;1788:872–891.

    Article  CAS  PubMed  Google Scholar 

  3. An HJ, Kronewitter SR, de Leoz ML, et al. Glycomics and disease markers. Curr Opin Chem Biol. 2009;13:601–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Trerotola M, Ganguly KK, Fazli L, et al. Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget. 2015;6:14318–14328.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gao Y, Chachadi VB, Cheng PW, et al. Glycosylation potential of human prostate cancer cell lines. Glycoconj J. 2012;29:525–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sugahara K, Kitagawa H. Recent advances in the study of the biosynthesis and functions of sulfated glycosaminoglycans. Curr Opin Struct Biol. 2000;10:518–527.

    Article  CAS  PubMed  Google Scholar 

  7. Klüppel M. The roles of chondroitin-4-sulfotransferase-1 in development and disease. Prog Mol Biol Transl Sci. 2010;93:113–132.

    Article  PubMed  Google Scholar 

  8. Hiraoka N, Nakagawa H, Ong E, et al. Molecular cloning and expression of two distinct human chondroitin 4-O-sulfotransferases that belong to the HNK-1 sulfotransferase gene family. J Biol Chem. 2000;275:20188–20196.

    Article  CAS  PubMed  Google Scholar 

  9. Okuda T, Mita S, Yamauchi S, et al. Molecular cloning, expression, and chromosomal mapping of human chondroitin 4-sulfotransferase, whose expression pattern in human tissues is different from that of chondroitin 6-sulfotransferase. J Biochem. 2000;128:763–770.

    Article  CAS  PubMed  Google Scholar 

  10. Mikami T, Mizumoto S, Kago N, et al. Specificities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfotransferases demonstrated using partially desulfated dermatan sulfate as an acceptor: implication of differential roles in dermatan sulfate biosynthesis. J Biol Chem. 2003;278:36115–36127.

    Article  CAS  PubMed  Google Scholar 

  11. Kang HG, Evers MR, Xia G, et al. Molecular cloning and characterization of chondroitin-4-O-sulfotransferase-3. A novel member of the HNK-1 family of sulfotransferases. J Biol Chem. 2002;277:34766–34772.

    Article  CAS  PubMed  Google Scholar 

  12. Ricciardelli C, Sakko AJ, Stahl J, et al. Prostatic chondroitin sulfate is increased in patients with metastatic disease but does not predict survival outcome. Prostate. 2009;69:761–769.

    Article  PubMed  Google Scholar 

  13. Sakko AJ, Butler MS, Byers S, et al. Immunohistochemical level of unsulfated chondroitin disaccharides in the cancer stroma is an independent predictor of prostate cancer relapse. Cancer Epidemiol Biomark Prev. 2008;17:2488–2497.

    Article  CAS  Google Scholar 

  14. Herman D, Leakey TI, Behrens A, et al. CHST11 gene expression and DNA methylation in breast cancer. Int J Oncol. 2015;46:1243–1251.

    PubMed  PubMed Central  Google Scholar 

  15. Teng YH, Tan PH, Chia SJ, et al. Increased expression of non-sulfated chondroitin correlates with adverse clinicopathological parameters in prostate cancer. Mod Pathol. 2008;21:893–901.

    Article  CAS  PubMed  Google Scholar 

  16. Cooney CA, Jousheghany F, Yao-Borengasser A, et al. Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells. Breast Cancer Res. 2011;13:R58. doi:10.1186/bcr2895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt HH, Dyomin VG, Palanisamy N, et al. Deregulation of the carbohydrate (chondroitin 4) sulfotransferase 11 (CHST11) gene in a B-cell chronic lymphocytic leukemia with a t(12;14)(q23;q32). Oncogene. 2004;23:6991–6996.

    Article  CAS  PubMed  Google Scholar 

  18. Basappa, Murugan S, Sugahara KN, et al. Involvement of chondroitin sulfate E in the liver tumor focal formation of murine osteosarcomacells. Glycobiology. 2009;19:735–742.

  19. Koul HK, Pal M, Koul S. Role of p38 map kinase signal transduction in solid tumors. Genes Cancer. 2013;4:342–359.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xie J, Jin B, Li DW, et al. ABCG2 regulated by MAPK pathways is associated with cancer progression in laryngeal squamous cell carcinoma. Am J Cancer Res. 2014;4:698–709.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zuo L, Lu M, Zhou Q, et al. Butyrate suppresses proliferation and migration of RKO colon cancer cells though regulating endocan expression by MAPK signaling pathway. Food Chem Toxicol. 2013;62:892–900.

    Article  CAS  PubMed  Google Scholar 

  22. Hsieh YH, Wu TT, Huang CY, et al. p38 mitogen-activated protein kinase pathway is involved in protein kinase Calpha-regulated invasion in human hepatocellular carcinoma cells. Cancer Res. 2007;67:4320–4327.

    Article  CAS  PubMed  Google Scholar 

  23. Yang L, Ling Y, Zhang Z, et al. ZL11n is a novel nitric oxide-releasing derivative of farnesylthiosalicylic acid that induces apoptosis in human hepatoma HepG2 cells via MAPK/mitochondrial pathways. Biochem Biophys Res Commun. 2011;409:752–757.

    Article  CAS  PubMed  Google Scholar 

  24. Klüppel M, Samavarchi-Tehrani P, Liu K, et al. C4ST-1/CHST11-controlled chondroitin sulfation interferes with oncogenic HRAS signaling in Costello syndrome. Eur J Hum Genet. 2012;20:870–877.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Tang ZY, Ye SL, et al. Establishment of cell clones with different metastatic potential from the metastatic hepato-cellular carcinoma cell line MHCC97. World J Gastroenterol. 2001;7:630–636.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian J, Tang ZY, Ye SL, et al. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer. 1999;81:814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schütte K, Bornschein J, Malfertheiner P. Hepatocellular carcinoma–epidemiological trends and risk factors. Dig Dis. 2009;27:80–92.

    PubMed  Google Scholar 

  28. Gorelik E, Galili U, Raz A. On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 2001;20:245–277.

    Article  CAS  PubMed  Google Scholar 

  29. Basappa, Rangappa KS, Sugahara K. Roles of glycosaminoglycans and glycanmimetics in tumor progression and metastasis. Glycoconj J. 2014;31:461–467.

  30. Vynios DH, Theocharis DA, Papageorgakopoulou N, et al. Biochemical changes of extracellular proteoglycans in squamous cell laryngeal carcinoma. Connect Tissue Res. 2008;49:239–243.

    Article  CAS  PubMed  Google Scholar 

  31. Stylianou M, Skandalis SS, Papadas TA, et al. Stage-related decorin and versican expression in human laryngeal cancer. Anticancer Res. 2008;28:245–251.

    CAS  PubMed  Google Scholar 

  32. Honke K, Taniguchi N. Sulfotransferases and sulfated oligosaccharides. Med Res Rev. 2002;22:637–654.

    Article  CAS  PubMed  Google Scholar 

  33. Klüppel M, Wight TN, Chan C, et al. Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development. 2005;132:3989–4003.

    Article  PubMed  Google Scholar 

  34. Bergefall K, Trybala E, Johansson M, et al. Chondroitin sulfate characterized by the E-disaccharide unit is a potent inhibitor of herpes simplex virus infectivity and provides the virus binding sites on gro2C cells. J Biol Chem. 2005;280:32193–32199.

    Article  CAS  PubMed  Google Scholar 

  35. Karlsson C, Dehne T, Lindahl A, et al. Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthr Cartil. 2010;18:581–592.

    Article  CAS  PubMed  Google Scholar 

  36. ten Dam GB, van de Westerlo EM, Purushothaman A, et al. Antibody GD3G7 selected against embryonic glycosaminoglycans defines chondroitin sulfate-E domains highly up-regulated in ovarian cancer and involved in vascular endothelial growth factor binding. Am J Pathol. 2007;171:1324–1333.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bret C, Hose D, Reme T, et al. Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br J Haematol. 2009;145:350–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalathas D, Theocharis DA, Bounias D, et al. Alterations of glycosaminoglycan disaccharide content and composition in colorectal cancer: structural and expressional studies. Oncol Rep. 2009;22:369–375.

    CAS  PubMed  Google Scholar 

  39. Wegrowski Y, Maquart FX. Chondroitin sulfate proteoglycans in tumor progression. Adv Pharmacol. 2006;53:297–321.

    Article  CAS  PubMed  Google Scholar 

  40. Asada M, Shinomiya M, Suzuki M, et al. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim Biophys Acta. 2009;1790:40–48.

    Article  CAS  PubMed  Google Scholar 

  41. Deepa SS, Umehara Y, Higashiyama S, et al. Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors. Implications as a physiological binding partner in the brain and other tissues. J Biol Chem. 2002;277:43707–43716.

    Article  CAS  PubMed  Google Scholar 

  42. Iida J, Wilhelmson KL, Ng J, et al. Cell surface chondroitin sulfate glycosaminoglycan in melanoma: role in the activation of pro-MMP-2 (pro-gelatinase A). Biochem J. 2007;403:553–563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Willis CM, Wrana JL, Klüppel M. Identification and characterization of TGFbeta-dependent and -independent cis-regulatory modules in the C4ST-1/CHST11 locus. Genet Mol Res. 2009;8:1331–1343.

    Article  CAS  PubMed  Google Scholar 

  44. Nadanaka S, Ishida M, Ikegami M, et al. Chondroitin 4-O-sulfotransferase-1 modulates Wnt-3a signaling through control of E disaccharide expression of chondroitin sulfate. J Biol Chem. 2008;283:27333–27343.

    Article  CAS  PubMed  Google Scholar 

  45. Shortkroff S, Yates KE. Alteration of matrix glycosaminoglycans diminishes articular chondrocytes’ response to a canonical Wnt signal. Osteoarthr Cartil. 2007;15:147–154.

    Article  CAS  PubMed  Google Scholar 

  46. Cheng SB, Wu LC, Hsieh YC, et al. Supercritical carbon dioxide extraction of aromatic turmerone from Curcuma longa Linn. Induces apoptosis through reactive oxygen species-triggered intrinsic and extrinsic pathways in human hepatocellular carcinoma HepG2 cells. J Agric Food Chem. 2012;60:9620–9630.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from National Natural Science Foundation of China (81271910, 81472014) and from Natural Science Foundation of Liaoning Province, China (2014023043), and supported by Project for Liaoning BaiQianWan Talents Program (2012921014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Li, Y., Song, X. et al. CHST11/13 Regulate the Metastasis and Chemosensitivity of Human Hepatocellular Carcinoma Cells Via Mitogen-Activated Protein Kinase Pathway. Dig Dis Sci 61, 1972–1985 (2016). https://doi.org/10.1007/s10620-016-4114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-016-4114-5

Keywords

Navigation