Skip to main content
Log in

Cytoplasmic Drosha Is Aberrant in Precancerous Lesions of Gastric Carcinoma and Its Loss Predicts Worse Outcome for Gastric Cancer Patients

Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The nuclear localization of Drosha is critical for its function as a microRNA maturation regulator. Dephosphorylation of Drosha at serine 300 and serine 302 disrupts its nuclear localization, and aberrant distribution of Drosha has been detected in some tumors.

Aims

The purpose of the present study was to assess cytoplasmic/nuclear Drosha expression in gastric cancer carcinogenesis and progression.

Methods

Drosha expression and its subcellular location was investigated by immunohistochemical staining of a set of tissue microarrays composed of normal adjacent tissues (374), chronic gastritis (137), precancerous lesions (94), and gastric adenocarcinoma (829) samples, and in gastric cancer cell lines with varying differentiation by immunofluorescence and western blot assay.

Results

Gradual loss of cytoplasmic Drosha was accompanied by tumor progression in both gastric cancer tissues and cell lines, and was inversely associated with tumor volume (P = 0.002), tumor grade (P < 0.001), tumor stage (P = 0.018), and distant metastasis (P = 0.026). Aberrant high levels of cytoplasmic Drosha were apparent in intestinal metaplasia and dysplasia tissues. The levels of nuclear Drosha were sharply decreased in chronic gastritis and maintained through precancerous lesions to gastric cancer. High levels of cytoplasmic Drosha predicted longer survival (LR = 7.088, P = 0.008) in gastric cancer patients.

Conclusions

Our data provide novel insights into gastric cancer that cytoplasmic Drosha potentially plays a role in preventing carcinogenesis and tumor progression, and may be an independent predictor of patient outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  4. Wesolowski R, Lee C, Kim R. Is there a role for second-line chemotherapy in advanced gastric cancer? Lancet Oncol. 2009;10:903–912.

    Article  PubMed  Google Scholar 

  5. Hundahl SA, Phillips JL, Menck HR. The National Cancer Data Base Report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy: Fifth Edition American Joint Committee on Cancer staging, proximal disease, and the “different disease” hypothesis. Cancer. 2000;88:921–932.

    Article  CAS  PubMed  Google Scholar 

  6. Correa P. Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res. 1992;52:6735–6740.

    CAS  PubMed  Google Scholar 

  7. Al-Awadhi H, John R, Al-Marzooqi F, Vincze A, Branicki F, Karam SM. Sequential alterations in gastric biopsies and tumor tissues support the multistep process of carcinogenesis. Histol Histopathol. 2011;26:1153–1164.

    CAS  PubMed  Google Scholar 

  8. Tian Y, Jia X, Wang S, et al. SOX2 oncogenes amplified and operate to activate AKT signaling in gastric cancer and predict immunotherapy responsiveness. J Cancer Res Clin Oncol. 2014;140:1117–1124.

    Article  CAS  PubMed  Google Scholar 

  9. Kaizaki R, Yashiro M, Shinto O, et al. Expression of ERas oncogene in gastric carcinoma. Anticancer Res. 2009;29:2189–2193.

    CAS  PubMed  Google Scholar 

  10. Shiao YH, Rugge M, Correa P, Lehmann HP, Scheer WD. p53 alteration in gastric precancerous lesions. Am J Pathol. 1994;144:511–517.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Byun DS, Cho K, Ryu BK, et al. Frequent monoallelic deletion of PTEN and its reciprocal association with PIK3CA amplification in gastric carcinoma. Int J Cancer. 2003;104:318–327.

    Article  CAS  PubMed  Google Scholar 

  12. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  13. Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs. Nature. 2004;432:235–240.

    Article  CAS  PubMed  Google Scholar 

  14. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U. Nuclear export of microRNA precursors. Science. 2004;303:95–98.

    Article  CAS  PubMed  Google Scholar 

  15. Papachristou DJ, Sklirou E, Corradi D, Grassani C, Kontogeorgakos V, Rao UN. Immunohistochemical analysis of the endoribonucleases Drosha, Dicer and Ago2 in smooth muscle tumours of soft tissues. Histopathology. 2012;60:E28–E36.

    Article  PubMed  Google Scholar 

  16. Shu GS, Yang ZL, Liu DC. Immunohistochemical study of Dicer and Drosha expression in the benign and malignant lesions of gallbladder and their clinicopathological significances. Pathol Res Pract. 2012;208:392–397.

    Article  CAS  PubMed  Google Scholar 

  17. Torres A, Torres K, Paszkowski T, et al. Major regulators of microRNAs biogenesis Dicer and Drosha are down-regulated in endometrial cancer. Tumour Biol. 2011;32:769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dedes KJ, Natrajan R, Lambros MB, et al. Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur J Cancer. 2011;47:138–150.

    Article  CAS  PubMed  Google Scholar 

  19. Sand M, Gambichler T, Skrygan M, et al. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Invest. 2010;28:649–653.

    Article  CAS  PubMed  Google Scholar 

  20. Avery-Kiejda KA, Braye SG, Forbes JF, Scott RJ. The expression of Dicer and Drosha in matched normal tissues, tumours and lymph node metastases in triple negative breast cancer. BMC Cancer. 2014;14:253.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vaksman O, Hetland TE, Trope CG, Reich R, Davidson B. Argonaute, Dicer, and Drosha are up-regulated along tumor progression in serous ovarian carcinoma. Hum Pathol. 2012;43:2062–2069.

    Article  CAS  PubMed  Google Scholar 

  22. Papachristou DJ, Korpetinou A, Giannopoulou E, et al. Expression of the ribonucleases Drosha, Dicer, and Ago2 in colorectal carcinomas. Virchows Arch. 2011;459:431–440.

    Article  CAS  PubMed  Google Scholar 

  23. Guo X, Liao Q, Chen P, et al. The microRNA-processing enzymes: Drosha and Dicer can predict prognosis of nasopharyngeal carcinoma. J Cancer Res Clin Oncol. 2012;138:49–56.

    Article  CAS  PubMed  Google Scholar 

  24. Sugito N, Ishiguro H, Kuwabara Y, et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res. 2006;12:7322–7328.

    Article  CAS  PubMed  Google Scholar 

  25. Merritt WM, Lin YG, Han LY, et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med. 2008;359:2641–2650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang X, Zhang Y, Tucker L, Ramratnam B. Phosphorylation of the RNase III enzyme Drosha at Serine300 or Serine302 is required for its nuclear localization. Nucleic Acids Res. 2010;38:6610–6619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tang X, Li M, Tucker L, Ramratnam B. Glycogen synthase kinase 3 beta (GSK3β) phosphorylates the RNAase III enzyme Drosha at S300 and S302. PLoS ONE. 2011;6:e20391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang X, Wen S, Zheng D, et al. Acetylation of Drosha on the N-terminus inhibits its degradation by ubiquitination. PLoS ONE. 2013;29:e72503.

    Article  Google Scholar 

  29. Khoshnaw SM, Rakha EA, Abdel-Fatah T, et al. The microRNA maturation regulator Drosha is an independent predictor of outcome in breast cancer patients. Breast Cancer Res Treat. 2013;137:139–153.

    Article  CAS  PubMed  Google Scholar 

  30. Jafarnejad SM, Sjoestroem C, Martinka M, Li G. Expression of the RNase III enzyme DROSHA is reduced during progression of human cutaneous melanoma. Mod Pathol. 2013;26:902–910.

    Article  CAS  PubMed  Google Scholar 

  31. Tchernitsa O, Kasajima A, Schäfer R, et al. Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol.. 2010;222:310–319.

    Article  PubMed  Google Scholar 

  32. Johansson AC, Visse E, Widegren B, Sjögren HO, Siesjö P. Computerized image analysis as a tool to quantify infiltrating leukocytes: a comparison between high- and low-magnification images. J Histochem Cytochem. 2001;49:1073–1079.

    Article  CAS  PubMed  Google Scholar 

  33. Prasad K, Prabhu GK. Image analysis tools for evaluation of microscopic views of immunohistochemically stained specimen in medical research—a review. J Med Syst. 2012;36:2621–2631.

    Article  PubMed  Google Scholar 

  34. Lu JG, Li Y, Li L, Kan X. Overexpression of osteopontin and integrin αv in laryngeal and hypopharyngeal carcinomas associated with differentiation and metastasis. J Cancer Res Clin Oncol. 2011;137:1613–1618.

    Article  CAS  PubMed  Google Scholar 

  35. Cui M, Yu W, Dong J, Chen J, Zhang X, Liu Y. Downregulation of ABI1 expression affects the progression and prognosis of human gastric carcinoma. Med Oncol. 2010;27:632–639.

    Article  CAS  PubMed  Google Scholar 

  36. Li LZ, Deng HX, Lou WZ, et al. Growth inhibitory effect of 4-phenyl butyric acid on human gastric cancer cells is associated with cell cycle arrest. World J Gastroenterol. 2012;18:79–83.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen GX, Zheng LH, Liu SY, He XH. rAd-p53 enhances the sensitivity of human gastric cancer cells to chemotherapy. World J Gastroenterol. 2011;17:4289–4297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hu P, Yang J, Hou Y, et al. LncRNA expression signatures of twist-induced epithelial-to-mesenchymal transition in MCF10A cells. Cell Signal. 2014;26:83–93.

    Article  CAS  PubMed  Google Scholar 

  39. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the microprocessor complex. Nature. 2004;432:231–235.

    Article  CAS  PubMed  Google Scholar 

  40. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419.

    Article  CAS  PubMed  Google Scholar 

  41. Wu H, Xu H, Miraglia LJ, Crooke ST. Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem. 2000;275:36957–36965.

    Article  CAS  PubMed  Google Scholar 

  42. Passon N, Gerometta A, Puppin C, et al. Expression of Dicer and Drosha in triple-negative breast cancer. J Clin Pathol. 2012;65:320–326.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang J, Zhang XH, Wang CX, et al. Dysregulation of microRNA biosynthesis enzyme Dicer plays an important role in gastric cancer progression. Int J Clin Exp Pathol. 2014;7:1702–1707.

    PubMed  PubMed Central  Google Scholar 

  44. Lin RJ, Lin YC, Chen J, et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res. 2010;70:7841–7850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ye F, Tang C, Shi W, et al. A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced by Helicobacter pylori lipopolysaccharide. Int J Cancer. 2015;136:2120–2131.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science Foundation of China (NSFC 81172296, NSFC 31171336); the Doctoral Fund of Ministry of Education, China (20125503110001); the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, China ([2011] 508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manran Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Animals and human rights consent

Human samples used in TMAS were approved by the Medical Ethics Committee for the Use of Human or Animal Subjects of Taizhou Hospital, Zhejiang Province.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Hou, Y., Xu, L. et al. Cytoplasmic Drosha Is Aberrant in Precancerous Lesions of Gastric Carcinoma and Its Loss Predicts Worse Outcome for Gastric Cancer Patients. Dig Dis Sci 61, 1080–1090 (2016). https://doi.org/10.1007/s10620-015-3986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3986-0

Keywords

Navigation