Skip to main content

Advertisement

Log in

Matrix Metalloproteinase 9 and Vasodilator-Stimulated Phosphoprotein Related to Acute Kidney Injury in Severe Acute Pancreatitis Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Severe acute pancreatitis (SAP) usually results in acute renal failure. Matrix metalloproteinase 9 (MMP-9) and vasodilator-stimulated phosphoprotein (VASP) may participate in disease progression.

Aim

To investigate the renal expression of MMP-9 and VASP in SAP rats with acute kidney injury.

Methods

A total of 100 rats were randomly assigned to sham 6-h, sham 12-h, sham 24-h, sham 36-h, sham 48-h, SAP 6-h, SAP 12-h, SAP 24-h, SAP 36-h, and SAP 48-h treatment groups (n = 10 per group). Levels of serum amylase (AMY), creatinine (Cr), and blood urea nitrogen (BUN) were determined. Renal pathology and ultrastructural examinations were performed, and renal mRNA and protein expression of MMP-9 and VASP were determined by real-time RT-PCR and Western blot, respectively. The activity of MMP-9 was assessed by gelatin zymography.

Results

In the SAP groups, serum levels of AMY, Cr, and BUN were markedly higher than in the sham groups. The peak value of AMY was observed from 12 to 24 h, but that of Cr and BUN was observed at 36 h. Capillary endothelial cells in the renal interstitium were impaired and expression of MMP-9 and VASP in the kidney was significantly increased when compared with the sham groups. Expression of MMP-9 and VASP declined when renal damage reached a maximum after 24 h.

Conclusions

In the presence of acute kidney injury in SAP, the renal expression of MMP-9 and VASP is related to damage of endothelial cells in capillaries, which reached a maximum at 24 h and declined afterwards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang XP, Wang L, Zhou YF. The pathogenic mechanism of severe acute pancreatitis complicated with renal injury: a review of current knowledge. Dig Dis Sci. 2008;53:297–306.

    Article  PubMed  Google Scholar 

  2. Lin HY, Lai JI, Lai YC, et al. Acute renal failure in severe pancreatitis: a population-based study. Ups J Med Sci. 2011;116:155–159.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Li H, Qian Z, Liu Z, et al. Risk factors and outcome of acute renal failure in patients with severe acute pancreatitis. J Crit Care. 2010;25:225–229.

    Article  CAS  PubMed  Google Scholar 

  4. Chen Z, Lu F, Fang H, Huang H. Effect of mesenchymal stem cells on renal injury in rats with severe acute pancreatitis. Exp Biol Med (Maywood). 2013;238:687–695.

    Article  Google Scholar 

  5. Juncker-Jensen A, Deryugina EI, Rimann I, et al. Tumor MMP-1 activates endothelial PAR1 to facilitate vascular intravasation and metastatic dissemination. Cancer Res. 2013;73:4196–4211.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pamenter ME, Ryu J, Hua ST, et al. DIDS prevents ischemic membrane degradation in cultured hippocampal neurons by inhibiting matrix metalloproteinase release. PLoS One. 2012;7:e43995.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Tressel SL, Kaneider NC, Kasuda S, et al. A matrix metalloprotease-PAR1 system regulates vascular integrity, systemic inflammation and death in sepsis. EMBO Mol Med. 2011;3:370–384.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol. 2013;48:222–272.

    Article  CAS  PubMed  Google Scholar 

  9. Luplertlop N, Misse D, Bray D, et al. Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep. 2006;7:1176–1181.

    Article  PubMed  Google Scholar 

  10. Hoelzle MK, Svitkina T. The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol Biol Cell. 2012;23:310–323.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Benz PM, Blume C, Seifert S, et al. Differential VASP phosphorylation controls remodeling of the actin cytoskeleton. J Cell Sci. 2009;122:3954–3965.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Benz PM, Blume C, Moebius J, et al. Cytoskeleton assembly at endothelial cell-cell contacts is regulated by alphaII-spectrin-VASP complexes. J Cell Biol. 2008;180:205–219.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chen H, Levine YC, Golan DE, Michel T, Lin AJ. Atrial natriuretic peptide-initiated cGMP pathways regulate vasodilator-stimulated phosphoprotein phosphorylation and angiogenesis in vascular endothelium. J Biol Chem. 2008;283:4439–4447.

    Article  CAS  PubMed  Google Scholar 

  14. Cheng AM, Rizzo-DeLeon N, Wilson CL, et al. Vasodilator-stimulated phosphoprotein protects against vascular inflammation and insulin resistance. Am J Physiol Endocrinol Metab. 2014;307:E571–E579.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Smolenski A, Poller W, Walter U, Lohmann SM. Regulation of human endothelial cell focal adhesion sites and migration by cGMP-dependent protein kinase I. J Biol Chem. 2000;275:25723–25732.

    Article  CAS  PubMed  Google Scholar 

  16. The Ministry of Science and Technology of the People’s Republic of China. Guidance suggestions for the care and use of laboratory animals. Beijing: The Ministry of Science and Technology of the People’s Republic of China; 2006.

  17. Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg. 1992;215:44–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Klopfleisch R. Multiparametric and semiquantitative scoring systems for the evaluation of mouse model histopathology—a systematic review. BMC Vet Res. 2013;9:123.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Gibson-Corley KN, Olivier AK, Meyerholz DK. Principles for valid histopathologic scoring in research. Vet Pathol. 2013;50:1007–1015.

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27:697–709.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang X, Chen X, Hong Q, et al. TIMP-1 promotes age-related renal fibrosis through upregulating ICAM-1 in human TIMP-1 transgenic mice. J Gerontol A Biol Sci Med Sci. 2006;61:1130–1143.

    Article  PubMed  Google Scholar 

  22. Ailawadi G, Knipp BS, Lu G, et al. A nonintrinsic regional basis for increased infrarenal aortic MMP-9 expression and activity. J Vasc Surg. 2003;37:1059–1066.

    Article  PubMed  Google Scholar 

  23. Wang L, Cossette SM, Rarick KR, et al. Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS One. 2013;8:e80933.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Guo Q, Li A, Xia Q, et al. The role of organ failure and infection in necrotizing pancreatitis: a prospective study. Ann Surg. 2014;259:1201–1207.

    Article  PubMed  Google Scholar 

  25. Zhang JX, Dang SC, Qu JG, Wang XQ. Ligustrazine alleviates acute renal injury in a rat model of acute necrotizing pancreatitis. World J Gastroenterol. 2006;12:7705–7709.

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Tyagi SC, Lominadze D, Roberts AM. Homocysteine in microvascular endothelial cell barrier permeability. Cell Biochem Biophys. 2005;43:37–44.

    Article  CAS  PubMed  Google Scholar 

  27. Nakae H, Endo S, Inoue Y, et al. Matrix metalloproteinase-1 and cytokines in patients with acute pancreatitis. Pancreas. 2003;26:134–138.

    Article  CAS  PubMed  Google Scholar 

  28. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827–839.

    Article  CAS  PubMed  Google Scholar 

  29. Dieterich HJ, Weissmuller T, Rosenberger P, Eltzschig HK. Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med. 2006;34:1775–1782.

    Article  CAS  PubMed  Google Scholar 

  30. Wei L, Muller S, Ouyang J, Stoltz JF, Wang X. Changes of vasodilator-stimulated phosphoprotein (VASP) and its phosphorylation in endothelial cells exposed to laminar flow. Clin Hemorheol Microcirc. 2003;28:113–120.

    CAS  PubMed  Google Scholar 

  31. Comerford KM, Lawrence DW, Synnestvedt K, Levi BP, Colgan SP. Role of vasodilator-stimulated phosphoprotein in PKA-induced changes in endothelial junctional permeability. FASEB J. 2002;16:583–585.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Medjaden Bioscience Limited for assisting in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Haitao Li, Jianqiang Liu, and Wen Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, J., Wang, W. et al. Matrix Metalloproteinase 9 and Vasodilator-Stimulated Phosphoprotein Related to Acute Kidney Injury in Severe Acute Pancreatitis Rats. Dig Dis Sci 60, 3647–3655 (2015). https://doi.org/10.1007/s10620-015-3820-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-015-3820-8

Keywords

Navigation