Skip to main content
Log in

Elevation of Alanine Transaminase and Markers of Liver Fibrosis After a Mixed Meal Challenge in Individuals with Type 2 Diabetes

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Hyperalimentation for 4 weeks is associated with raised liver enzymes and liver fat content (LFC), which are two common features found in individuals with diabetes.

Aim

We evaluated the effect of two mixed meal challenges on LFC, liver enzymes and serum bio-markers of liver injury and fibrosis in 16 healthy volunteers (HV) and subjects with type 2 diabetes (T2DM).

Methods

Subjects (HV: 9 male, 7 female, aged 57.9 ± 1.7 years, body mass index (BMI) 27.1 kg/m2; and T2DM: 11 male, 5 female, aged 62.1 ± 1.3 years, BMI 28.0 ± 0.4 kg/m2) consumed two meals at 1 h (884 kcal) and at 6 h (1,096 kcal). LFC determined by 1H magnetic resonance spectroscopy, serum levels of liver enzymes, hyaluronic acid (HA), procollagen III N-terminal peptide (P3NP) and tissue inhibitor metalloproteinase-1 (TIMP-1) were estimated at time 0 (fasting) and 9 h (postprandial).

Results

Fasting LFC was higher in the T2DM group 7.6 % (4.9, 15.4) [median (inter-quartile range)] than in the HV group 2.3 % (0.8, 5.1) (p < 0.05) while levels of HA, P3NP and TIMP-1 were similar. Following the meal challenge there was no significant change in LFC. Subjects with T2DM had higher post-prandial rise in alanine transaminase (ALT) (p = 0.014), serum HA (p = 0.007) and P3NP (p = 0.015) compared with HV. Fasting LFC correlated with a greater post-prandial increase in P3NP levels in all subjects (Pearson correlation r = 0.53, p = 0.001).

Conclusions

In subjects with T2DM, a mixed meal challenge is associated with a significant elevation in the serum levels of ALT, HA and P3NP without significant changes in LFC. These markers should be performed in the fasted state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

LFC:

Liver fat content

BMI:

Body mass index

T2DM:

Type 2 diabetes mellitus

HA:

Hyaluronic acid

P3NP:

Procollagen III N-terminal peptide

TIMP-1:

Tissue inhibitor metalloproteinase-1

ALT:

Alanine aminotransferase

HV:

Healthy volunteers

NAFLD:

Nonalcoholic fatty liver disease

1H MRS:

Magnetic resonance spectroscopy

MR:

Magnetic resonance

TG:

Triglyceride

FFA:

Free fatty acid

THRIVE:

T-1 (weighted) high resolution isotropic volume excitation image

TFE:

Turbo field echo

PRESS:

Point resolved spectroscopy

TE/TR:

Echo time for PRESS sequence/repetition time

GGT:

Gamma-glutamyl transpeptidase

ALP:

Alkaline phosphatase

Bil:

Bilirubin

HDL-cholesterol:

High density lipoprotein-cholesterol

LDL-c:

Low density lipoprotein-cholesterol

IL:

Interleukin

MCP-1:

Monocyte chemoattractant

TNFα:

Tumor necrosis factor alpha

TGFβ:

Transforming growth factor-beta

HbA1c:

Glycated hemoglobin A1c

HOMA-IR:

Homeostatic model assessment

References

  1. Clark JM, Brancati FL, Diehl AM. The prevalence and etiology of elevated aminotransferase levels in the United States. Am J Gastroenterol. 2003;98:960–967.

    Article  CAS  PubMed  Google Scholar 

  2. Skelly MM, James PD, Ryder SD. Findings on liver biopsy to investigate abnormal liver function tests in the absence of diagnostic serology. J Hepatol. 2001;35:195–199.

    Article  CAS  PubMed  Google Scholar 

  3. Hyeon CK, Chung MN, Sun HJ, et al. Normal serum aminotransferase concentration and risk of mortality from liver diseases: prospective cohort study. BMJ. 2004;328:983.

    Article  Google Scholar 

  4. Ruhl CE, Everhart JE. Elevated serum alanine aminotransferase and G-glutamyltransferase and mortality in the United States population. Gastroenterology. 2009;136:477–485.

    Article  CAS  PubMed  Google Scholar 

  5. Adams LA, Waters OR, Knuiman MW, et al. NAFLD as a risk factor for the development of diabetes and the metabolic syndrome: an eleven-year follow-up study. Am J Gastroenterol. 2009;104:861–867.

    Article  PubMed  Google Scholar 

  6. Guha I, Parkes J, Roderick P, et al. Non-invasive markers associated with liver fibrosis in non-alcoholic fatty liver disease. Gut. 2006;55:1650–1660.

    Article  CAS  PubMed  Google Scholar 

  7. Day CP, James OF. Steatohepatitis: a tale of two “hits”? Gastroenterology. 1998;114:842–845.

    Article  CAS  PubMed  Google Scholar 

  8. Tiikkainen M, Bergholm R, Vehkavaara S, et al. Effects of identical weight loss on body composition and features of insulin resistance in obese women with high and low liver fat content. Diabetes. 2003;52:701–707.

    Article  CAS  PubMed  Google Scholar 

  9. Kechagias S, Ernersson A, Dahlqvist O, et al. Fast-food-based hyper-alimentation can induce rapid and profound elevation of serum alanine aminotransferase in healthy subjects. Gut. 2008;57:649–654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Eahceioglu IH, Yalniz M, Ataseven H, et al. Levels of serum hyaluronic acid, TNF- and IL-8 in patients with nonalcoholic steatohepatitis. Hepatogastroenterology. 2005;52:1549–1553.

    Google Scholar 

  11. Siri W. Body composition from fluid space and density: analysis of methods. In: Brozek J, Henschel A, eds. Techniques for measuring body composition. Washington, DC: National Academy of Science; 1961. pp. 223–224.

  12. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man [see comment]. Diabetologia. 1985;28:412–419.

    Article  CAS  PubMed  Google Scholar 

  13. Fabbrini E, Magkos F, Mohammed BS, et al. Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc Nat Acad Sci. 2009;106:15430–15435.

    Article  CAS  PubMed  Google Scholar 

  14. Donnelly KL, Smith CI, Schwarzenberg SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–1351.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Kirk E, Reeds DN, Finck BN, et al. Dietary fat and carbohydrates differentially alter insulin sensitivity during caloric restriction. Gastroenterology. 2009;136:1552–1560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Horton TJ, Drougas H, Brachey A, et al. Fat and carbohydrate overfeeding in humans: different effects on energy storage. Am J Clin Nutr. 1995;62:19–29.

    CAS  PubMed  Google Scholar 

  17. Bortolotti M, Kreis R, Debard C, et al. High protein intake reduces intrahepatocellular lipid deposition in humans. Am J Clin Nutr. 2009;90:1002–1010.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson NA, Sachinwalla T, Walton DW, et al. Aerobic exercise training reduces hepatic and visceral lipids in obese individuals without weight loss. Hepatology. 2009;50:1105–1112.

    Article  CAS  PubMed  Google Scholar 

  19. Lawlor DA, Sattar N, Smith GD, et al. The associations of physical activity and adiposity with alanine aminotransferase and gamma-glutamyltransferase. Am J Epidemiol. 2005;161:1081–1088.

    Article  PubMed  Google Scholar 

  20. Rosenberg W, Voelker M, Thiel R, et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology. 2004;127:1704–1713.

    Article  PubMed  Google Scholar 

  21. Guha IN, Parkes J, Roderick P, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology. 2008;47:455–460.

    Article  PubMed  Google Scholar 

  22. Horslev-Petersen K, Bentsen K, Halberg P, et al. Connective tissue metabolites in serum as markers of disease activity in patients with rheumatoid arthritis. Clin Exp Rheumatol. 1988;6:129–134.

    CAS  PubMed  Google Scholar 

  23. Montazeri G, Estakhri A, Mohamadnejad M, et al. Serum hyaluronate as a non-invasive marker of hepatic fibrosis and inflammation in HBeAg-negative chronic hepatitis B. BMC Gastroenterol. 2005;5:32.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–1669.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepatic fibrogenesis. J Gastroenterol Hepatol. 2007;22:S79–S84.

    Article  CAS  PubMed  Google Scholar 

  26. Georgescu EF, Georgescu M. Therapeutic options in non-alcoholic steatohepatitis (NASH). Are all agents alike? Results of a preliminary study. J Gastrointest Liver Dis. 2007;16:39–46.

    Google Scholar 

  27. Rallidis LS, Drakoulis CK, Parasi AS. Pravastatin in patients with nonalcoholic steatohepatitis: results of a pilot study. Atherosclerosis. 2004;174:193–196.

    Article  CAS  PubMed  Google Scholar 

  28. Nelson A, Torres DM, Morgan AE, et al. A pilot study using simvastatin in the treatment of nonalcoholic steatohepatitis: a randomized placebo-controlled trial. J Clin Gastroenterol. 2009;43:990–994.

    Article  CAS  PubMed  Google Scholar 

  29. Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106:2067–2072.

    Article  CAS  PubMed  Google Scholar 

  30. Mayo MJ, Parkes J. Prediction of clinical outcomes in primary biliary cirrhosis by serum enhanced liver fibrosis assay. Hepatology. 2008;48:1549–1557.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by AstraZeneca, Europe. The study was investigator led and the authors had complete independence from the funder.

Conflict of interest

RC is an employee of iQur Ltd and his role was the analysis of serum HA, amino-terminal P3NP, and TIMP-1 as well as editing the manuscript. JWE and SMP are employees of Astrazeneca, Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. H. Khoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khoo, E.Y.H., Stevenson, M.C., Leverton, E. et al. Elevation of Alanine Transaminase and Markers of Liver Fibrosis After a Mixed Meal Challenge in Individuals with Type 2 Diabetes. Dig Dis Sci 57, 3017–3025 (2012). https://doi.org/10.1007/s10620-012-2219-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-012-2219-z

Keywords

Navigation