Skip to main content
Log in

Relative Contributions of Afferent Vagal Fibers to Resistance to Diet-Induced Obesity

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

We previously demonstrated vagal neural pathways, specifically subdiaphragmatic afferent fibers, regulate expression of the intestinal sodium-glucose cotransporter SGLT1, the intestinal transporter responsible for absorption of dietary glucose. We hypothesized targeting this pathway could be a novel therapy for obesity. We therefore tested the impact of disrupting vagal signaling by total vagotomy or selective vagal de-afferentation on weight gain and fat content in diet-induced obese rats.

Methods

Male Sprague–Dawley rats (n = 5–8) underwent truncal vagotomy, selective vagal de-afferentation with capsaicin, or sham procedure. Animals were maintained for 11 months on a high-caloric Western diet. Abdominal visceral fat content was assessed by magnetic resonance imaging together with weight of fat pads at harvest. Glucose homeostasis was assessed by fasting blood glucose and HbA1C. Jejunal SGLT1 gene expression was assessed by qPCR and immunoblotting and function by glucose uptake in everted jejunal sleeves.

Results

At 11-months, vagotomized rats weighed 19% less (P = 0.003) and de-afferented rats 7% less (P = 0.19) than shams. Vagotomized and de-afferented animals had 52% (P < 0.0001) and 18% reduction (P = 0.039) in visceral abdominal fat, respectively. There were no changes in blood glucose or glycemic indexes. SGLT1 mRNA, protein and function were unchanged across all cohorts at 11-months postoperatively.

Conclusions

Truncal vagotomy led to significant reductions in both diet-induced weight gain and visceral abdominal fat deposition. Vagal de-afferentation led to a more modest, but clinically and statistically significant, reduction in visceral abdominal fat. As increased visceral abdominal fat is associated with excess morbidity and mortality, vagal de-afferentation may be a useful adjunct in bariatric surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–1737. doi:10.1001/jama.292.14.1724.

    Article  PubMed  CAS  Google Scholar 

  2. Boss TJ, Peters J, Patti MG, Lustig RH, Kral JG. Laparoscopic truncal vagotomy for severe obesity: six month experience in 10 patients from a prospective, two-center study. Surg Obes Relat Dis. 2007;3:292.

    Article  Google Scholar 

  3. Kral JG. Vagotomy for treatment of severe obesity. Lancet. 1978;1:307–308.

    Article  PubMed  CAS  Google Scholar 

  4. Kral JG. Effects of truncal vagotomy on body weight and hyperinsulinemia in morbid obesity. Am J Clin Nutr. 1980;33:416–419.

    PubMed  CAS  Google Scholar 

  5. Camilleri M, Toouli J, Herrera MF, et al. Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery. 2008;143:723–731. doi:10.1016/j.surg.2008.03.015.

    Article  PubMed  CAS  Google Scholar 

  6. Stearns AT, Balakrishnan A, Rounds J, Rhoads DB, Ashley SW, Tavakkolizadeh A. Capsaicin-sensitive vagal afferents modulate posttranscriptional regulation of the rat Na+/glucose cotransporter SGLT1. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1078–G1083. doi:10.1152/ajpgi.00591.2007.

    Article  PubMed  CAS  Google Scholar 

  7. Martin MG, Lostao MP, Turk E, Lam J, Kreman M, Wright EM. Compound missense mutations in the sodium/d-glucose cotransporter result in trafficking defects. Gastroenterology. 1997;112:1206–1212.

    Article  PubMed  CAS  Google Scholar 

  8. Johnston KL, Clifford MN, Morgan LM. Possible role for apple juice phenolic, compounds in the acute modification of glucose tolerance and gastrointestinal hormone secretion in humans. J Sci Food Agric. 2002;82:1800–1805.

    Article  CAS  Google Scholar 

  9. Rossetti L, Smith D, Shulman GI, Papachristou D, Defronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987;79:1510–1515.

    Article  PubMed  CAS  Google Scholar 

  10. Melnyk A, Himms-Hagen J. Resistance to aging-associated obesity in capsaicin-desensitized rats one year after treatment. Obes Res. 1995;3:337–344.

    PubMed  CAS  Google Scholar 

  11. Balakrishnan A, Stearns AT, Rounds J, et al. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose cotransporter (SGLT1). Surgery. 2008;143:813–818. doi:10.1016/j.surg.2008.03.018.

    Article  PubMed  Google Scholar 

  12. Stearns AT, Balakrishnan A, Rhoads DB, Ashley SW, Tavakkolizadeh A. Diurnal expression of the rat intestinal sodium-glucose cotransporter 1 (SGLT1) is independent of local luminal factors. Surgery. 2009;145:294–302. doi:10.1016/j.surg.2008.11.004.

    Article  PubMed  Google Scholar 

  13. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

    PubMed  CAS  Google Scholar 

  14. Kral JG, Gortz L. Truncal vagotomy in morbid obesity. Int J Obes. 1981;5:431–435.

    PubMed  CAS  Google Scholar 

  15. Kral JG. Vagotomy as a treatment for morbid obesity. Surg Clin North Am. 1979;59:1131–1138.

    PubMed  CAS  Google Scholar 

  16. Kral JG, Gortz L, Hermansson G, Wallin GS. Gastroplasty for obesity: long-term weight loss improved by vagotomy. World J Surg. 1993;17:75–78.

    Article  PubMed  CAS  Google Scholar 

  17. Angrisani L, Cutolo PP, Ciciriello MB, et al. Laparoscopic adjustable gastric banding with truncal vagotomy versus laparoscopic adjustable gastric banding alone: interim results of a prospective randomized trial. Surg Obes Relat Dis. 2009;5:435–438. doi:10.1016/j.soard.2008.08.024.

    Article  PubMed  Google Scholar 

  18. Ferrari B, Arnold M, Carr RD, et al. Subdiaphragmatic vagal deafferentation affects body weight gain and glucose metabolism in obese male Zucker (fa/fa) rats. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1027–R1034. doi:10.1152/ajpregu.00736.2004.

    Article  PubMed  CAS  Google Scholar 

  19. Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham heart study. Circulation. 2007;116:39–48. doi:10.1161/circulationaha.106.675355.

    Article  PubMed  Google Scholar 

  20. Nguyen-Duy TB, Nichaman MZ, Church TS, Blair SN, Ross R. Visceral fat and liver fat are independent predictors of metabolic risk factors in men. Am J Physiol Endocrinol Metab. 2003;284:E1065–E1071. doi:10.1152/ajpendo.00442.200200442.2002.

    PubMed  CAS  Google Scholar 

  21. Banerji MA, Buckley MC, Chaiken RL, Gordon D, Lebovitz HE, Kral JG. Liver fat, serum triglycerides and visceral adipose tissue in insulin-sensitive and insulin-resistant black men with NIDDM. Int J Obes Relat Metab Disord. 1995;19:846–850.

    PubMed  CAS  Google Scholar 

  22. Diamant M, Lamb HJ, van de Ree MA, et al. The association between abdominal visceral fat and carotid stiffness is mediated by circulating inflammatory markers in uncomplicated type 2 diabetes. J Clin Endocrinol Metab. 2005;90:1495–1501. doi:10.1210/jc.2004-1579.

    Article  PubMed  CAS  Google Scholar 

  23. Despres JP, Lemieux S, Lamarche B, et al. The insulin resistance-dyslipidemic syndrome: contribution of visceral obesity and therapeutic implications. Int J Obes Relat Metab Disord. 1995;19:S76–S86.

    PubMed  Google Scholar 

  24. Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN, Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity (Silver Spring). 2006;14:336–341. doi:10.1038/oby.2006.43.

    Article  Google Scholar 

  25. Carroll JF, Franks SF, Smith AB, Phelps DR. Visceral adipose tissue loss and insulin resistance 6 months after laparoscopic gastric banding surgery: a preliminary study. Obes Surg. 2009;19:47–55. doi:10.1007/s11695-008-9642-4.

    Article  PubMed  Google Scholar 

  26. Powley TL, Chi MM, Baronowsky EA, Phillips RJ. Gastrointestinal tract innervation of the mouse: afferent regeneration and meal patterning after vagotomy. Am J Physiol Regul Integr Comp Physiol. 2005;289:R563–R574. doi:10.1152/ajpregu.00167.2005.

    Article  PubMed  CAS  Google Scholar 

  27. Phillips RJ, Baronowsky EA, Powley TL. Long-term regeneration of abdominal vagus: efferents fail while afferents succeed. J Comp Neurol. 2003;455:222–237. doi:10.1002/cne.10470.

    Article  PubMed  Google Scholar 

  28. Phillips RJ, Baronowsky EA, Powley TL. Regenerating vagal afferents reinnervate gastrointestinal tract smooth muscle of the rat. J Comp Neurol. 2000;421:325–346. doi:10.1002/(SICI)1096-9861(20000605)421:3<325:AID-CNE3>3.0.CO;2-9.

    Article  PubMed  CAS  Google Scholar 

  29. Ritter RC, Ladenheim EE. Capsaicin pretreatment attenuates suppression of food intake by cholecystokinin. Am J Physiol. 1985;248:R501–R504.

    PubMed  CAS  Google Scholar 

  30. Mordes JP, Lozy ME, Herrera MG, Silen W. Effects of vagotomy with and without pyloroplasty on weight and food-intake in rats. Am J Physiol. 1979;236:R61–R66.

    PubMed  CAS  Google Scholar 

  31. Murphy KG, Bloom SR. Gut hormones and the regulation of energy homeostasis. Nature. 2006;444:854–859. doi:10.1038/nature05484.

    Article  PubMed  CAS  Google Scholar 

  32. Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science. 2005;307:1909–1914. doi:10.1126/science.1109951.

    Article  PubMed  CAS  Google Scholar 

  33. Leung FW, Go VL, Scremin OU, et al. Pilot studies to demonstrate that intestinal mucosal afferent nerves are functionally linked to visceral adipose tissue. Dig Dis Sci. 2007;52:2695–2702. doi:10.1007/s10620-006-9645-8.

    Article  PubMed  Google Scholar 

  34. Pardo JV, Sheikh SA, Kuskowski MA, et al. Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int J Obes (Lond). 2007;31:1756–1759. doi:10.1038/sj.ijo.0803666

    Article  CAS  Google Scholar 

  35. Esposito G, Faelli A, Tosco M, Orsenigo MN, Battistessa R. Age-related changes in rat intestinal transport of d-glucose, sodium, and water. Am J Physiol. 1985;249:G328–G334.

    PubMed  CAS  Google Scholar 

  36. Vincenzini MT, Iantomasi T, Stio M, et al. Glucose transport during ageing by human intestinal brush-border membrane vesicles. Mech Ageing Dev. 1989;48:33–41.

    Article  PubMed  CAS  Google Scholar 

  37. Stearns AT, Balakrishnan A, Tavakkolizadeh A. Impact of Roux-en-Y gastric bypass surgery on rat intestinal glucose transport. Am J Physiol Gastrointest Liver Physiol. 2009;297:G950–G957.

    Article  PubMed  CAS  Google Scholar 

  38. Dyer J, Wood IS, Palejwala A, Ellis A, Shirazi-Beechey SP. Expression of monosaccharide transporters in intestine of diabetic humans. Am J Physiol Gastrointest Liver Physiol. 2002;282:G241–G248. doi:10.1152/ajpgi.00310.2001.

    PubMed  CAS  Google Scholar 

  39. Gram DX, Ahren B, Nagy I, et al. Capsaicin-sensitive sensory fibers in the islets of Langerhans contribute to defective insulin secretion in Zucker diabetic rat, an animal model for some aspects of human type 2 diabetes. Eur J Neurosci. 2007;25:213–223. doi:10.1111/j.1460-9568.2006.05261.x.

    Article  PubMed  Google Scholar 

  40. Gram DX, Hansen AJ, Wilken M, et al. Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats. Eur J Endocrinol. 2005;153:963–969. doi:10.1530/eje.1.02046.

    Article  PubMed  CAS  Google Scholar 

  41. Gram DX, Hansen AJ, Deacon CF, et al. Sensory nerve desensitization by resiniferatoxin improves glucose tolerance and increases insulin secretion in Zucker Diabetic Fatty rats and is associated with reduced plasma activity of dipeptidyl peptidase IV. Eur J Pharmacol. 2005;509:211–217. doi:10.1016/j.ejphar.2004.12.039.

    Article  PubMed  CAS  Google Scholar 

  42. Motter AL, Ahern GP. TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 2008;582:2257–2262.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding sources include: Harvard Clinical Nutrition Center Grant P30-DK040561 (AT); Berkeley Fellowship and George Herbert Hunt Travelling Fellowship (ATS); and Nutricia Foundation Fellowship (AB). We would like to thank Dr Sharon Peled, and Dr Clare Tempany-Afdhal for technical advice and support with magnetic resonance image acquisition, and Jan Rounds for invaluable managerial support.

Conflict of interest

No authors have any conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Tavakkolizadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stearns, A.T., Balakrishnan, A., Radmanesh, A. et al. Relative Contributions of Afferent Vagal Fibers to Resistance to Diet-Induced Obesity. Dig Dis Sci 57, 1281–1290 (2012). https://doi.org/10.1007/s10620-011-1968-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1968-4

Keywords

Navigation