Skip to main content
Log in

Activation of Liver X Receptors Attenuates Endotoxin-Induced Liver Injury in Mice with Nonalcoholic Fatty Liver Disease

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background/Aims

Nonalcoholic fatty liver disease (NAFLD) is classically associated with insulin resistance and the inflammatory response, especially in the nonalcoholic steatohepatitis phase. The liver X receptors (LXRs) play a critical role in the regulation of cholesterol metabolism and inflammatory processes.

Methods

Wild-type C57BL/6 mice were fed a normal diet (ND) or a high-fat (HF) diet for 8 weeks. Some ND- and HF-fed mice were treated (i.p.) with the LXR agonist T0901317 (30 mg/kg/day) for 7 days. Lipopolysaccharide (LPS, 50 μg/mouse) was then injected intraperitoneally to induce liver injury. The activation of MAPKs, NF-κB and the PI3K pathway was evaluated using Western blot. Bone marrow-derived macrophages (MDMs) were isolated from the femurs of C57BL/6 mice and cultured with or without T0901317 (20 μmol/l). The expression of tumor necrosis factor-alpha (TNF-α) and inducible nitric oxide synthase (iNOS) was evaluated in vitro or in vivo using real-time PCR, immunohistochemistry, or Western blot.

Results

The LXR agonist T0901317 attenuated LPS-induced liver injury in a murine model of NAFLD, reflected by reduced serum alanine aminotransferase and aspartate aminotransferase levels, and reduced liver histology changes. Activation of LXRs reduced TNF-α and iNOS expression through inhibiting JNK and the PI3K signaling pathway. An in vitro study demonstrated that the activation of LXR inhibited the expression of TNF-α and iNOS in the MDMs of mice.

Conclusions

Activation of LXRs attenuates LPS-induced liver injury in murine NAFLD through inhibiting the pro-inflammatory activity of macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

LPS:

Lipopolysaccharide

LXR:

Liver X receptor

ND:

Normal diet

HF:

High-fat diet

TNF-α:

Tumor necrosis factor-alpha

iNOS:

Inducible nitric oxide synthase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

IL:

Interleukin

SREBP-1c:

Sterol regulatory element binding protein 1c

ChREBP:

Carbohydrate response element-binding protein

MDM:

Bone marrow-derived macrophages

References

  1. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231.

    Article  PubMed  CAS  Google Scholar 

  2. Brunt EM. Pathology of fatty liver disease. Mod Pathol. 2007;20:S40–S48.

    Article  PubMed  CAS  Google Scholar 

  3. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Annu Rev Pathol. 2010;5:145–171.

    Article  PubMed  CAS  Google Scholar 

  4. Marra F. Nuclear factor-kappaB inhibition and non-alcoholic steatohepatitis: inflammation as a target for therapy. Gut. 2008;57:570–572.

    Article  PubMed  CAS  Google Scholar 

  5. Kodama Y, Brenner DA. c-Jun N-terminal kinase signaling in the pathogenesis of nonalcoholic fatty liver disease: multiple roles in multiple steps. Hepatology. 2009;49:6–8.

    Article  PubMed  CAS  Google Scholar 

  6. Repa JJ, Mangelsdorf DJ. The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu Rev Cell Dev Biol. 2000;16:459–481.

    Article  PubMed  CAS  Google Scholar 

  7. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ. An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature. 1996;383:728–731.

    Article  PubMed  CAS  Google Scholar 

  8. Lehmann JM, Kliewer SA, Moore LB, et al. Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J Biol Chem. 1997;272:3137–3140.

    Article  PubMed  CAS  Google Scholar 

  9. Janowski BA, Grogan MJ, Jones SA, et al. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc Natl Acad Sci USA. 1999;96:266–271.

    Article  PubMed  CAS  Google Scholar 

  10. Higuchi N, Kato M, Shundo Y, et al. Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res. 2008;38:1122–1129.

    Article  PubMed  CAS  Google Scholar 

  11. Cha JY, Repa JJ. The liver X receptor (LXR) and hepatic lipogenesis. The carbohydrate-response element-binding protein is a target gene of LXR. J Biol Chem. 2007;282:743–751.

    Article  PubMed  CAS  Google Scholar 

  12. Myhre AE, Agren J, Dahle MK, et al. Liver X receptor is a key regulator of cytokine release in human monocytes. Shock. 2008;29:468–474.

    PubMed  CAS  Google Scholar 

  13. Wang YY, Dahle MK, Agren J, et al. Activation of the liver X receptor protects against hepatic injury in endotoxemia by suppressing Kupffer cell activation. Shock. 2006;25:141–146.

    Article  PubMed  CAS  Google Scholar 

  14. Xu J, Wagoner G, Douglas JC, Drew PD. Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity. J Leukoc Biol. 2009;86:401–409.

    Article  PubMed  CAS  Google Scholar 

  15. Ma X, Hua J, Li Z. Probiotics improve high-fat diet-induced hepatic steatosis and insulin resistance by increasing hepatic NKT cells. J Hepatol. 2008;49:821–830.

    Article  PubMed  CAS  Google Scholar 

  16. Tilg H. The role of cytokines in non-alcoholic fatty liver disease. Dig Dis. 2010;28:179–185.

    Article  PubMed  Google Scholar 

  17. Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology. 2003;37:343–350.

    Article  PubMed  CAS  Google Scholar 

  18. Hatano E, Bennett BL, Manning AM, Qian T, Lemasters JJ, Brenner DA. NF-kappaB stimulates inducible nitric oxide synthase to protect mouse hepatocytes from TNF-alpha- and Fas-mediated apoptosis. Gastroenterology. 2001;120:1251–1262.

    Article  PubMed  CAS  Google Scholar 

  19. Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology. 2006;131:934–945.

    Article  PubMed  CAS  Google Scholar 

  20. Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 2008;28:360–369.

    Article  PubMed  CAS  Google Scholar 

  21. Sakai K, Suzuki H, Oda H, et al. Phosphoinositide 3-kinase in nitric oxide synthesis in macrophage: critical dimerization of inducible nitric-oxide synthase. J Biol Chem. 2006;281:17736–17742.

    Article  PubMed  CAS  Google Scholar 

  22. Baffy G. Kupffer cells in non-alcoholic fatty liver disease: the emerging view. J Hepatol. 2009;51:212–223.

    Article  PubMed  CAS  Google Scholar 

  23. Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415–424.

    Article  PubMed  CAS  Google Scholar 

  24. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med. 2003;9:213–219.

    Article  PubMed  CAS  Google Scholar 

  25. Ogawa S, Lozach J, Benner C, et al. Molecular determinants of crosstalk between nuclear receptors and Toll-like receptors. Cell. 2005;122:707–721.

    Article  PubMed  CAS  Google Scholar 

  26. Mantovani A, Sica A, Locati M. Macrophage polarization comes of age. Immunity. 2005;23:344–346.

    Article  PubMed  CAS  Google Scholar 

  27. Grefhorst A, Elzinga BM, Voshol PJ, et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem. 2002;277:34182–34190.

    Article  PubMed  CAS  Google Scholar 

  28. Wouters K, van Bilsen M, van Gorp PJ, et al. Intrahepatic cholesterol influences progression, inhibition and reversal of non-alcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett. 2010;584:1001–1005.

    Article  PubMed  CAS  Google Scholar 

  29. Wouters K, van Gorp PJ, Bieghs V, et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology. 2008;48:474–486.

    Article  PubMed  Google Scholar 

  30. Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology. 2007;45:1366–1374.

    Article  PubMed  CAS  Google Scholar 

  31. Choi SS, Diehl AM. Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Curr Opin Lipidol. 2008;19:295–300.

    Article  PubMed  CAS  Google Scholar 

  32. Beaven SW, Wroblewski K, Wang J, Hong C, Bensinger S, Tsukamoto H, Tontonoz P. Liver X receptor signaling is a determinant of stellate cell activation and susceptibility to fibrotic liver disease. Gastroenterology. 2011;140:1052–1062.

    Article  PubMed  CAS  Google Scholar 

  33. McKim SE, Gabele E, Isayama F, et al. Inducible nitric oxide synthase is required in alcohol-induced liver injury: studies with knockout mice. Gastroenterology. 2003;125:1834–1844.

    Article  PubMed  CAS  Google Scholar 

  34. Venkatraman A, Shiva S, Wigley A, et al. The role of iNOS in alcohol-dependent hepatotoxicity and mitochondrial dysfunction in mice. Hepatology. 2004;40:565–573.

    Article  PubMed  CAS  Google Scholar 

  35. Spruss A, Kanuri G, Uebel K, Bischoff SC, Bergheim I. Role of the inducible nitric oxide synthase (iNOS) in the onset of fructose-induced steatosis in mice. Antioxid Redox Signal. 2011;14:2121–2135.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Awards from the National Natural Science Foundation of China (#30770963, #30972751, XM), Shanghai Pujiang Program and Program for Innovative Research Team of Shanghai Municipal Education Commission (XM).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Ma.

Additional information

Yuan Liu, Xiaofeng Han, and Zhaolian Bian contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Han, X., Bian, Z. et al. Activation of Liver X Receptors Attenuates Endotoxin-Induced Liver Injury in Mice with Nonalcoholic Fatty Liver Disease. Dig Dis Sci 57, 390–398 (2012). https://doi.org/10.1007/s10620-011-1902-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-011-1902-9

Keywords

Navigation