Skip to main content

Advertisement

Log in

Altered Expression and Localization of Connexin32 in Human and Murine Gastric Carcinogenesis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Intercellular communication via gap junctions, composed of protein subunits called connexins (Cxs), plays a key role in controlling cell growth, differentiation and carcinogenesis. Impaired gap junctional intercellular communication has been reported in various cancers and diseases.

Aims

We investigated Cx32 expression patterns and semiquantitatively assessed Cx32 expression in cancers and preneoplastic lesions. To determine if cell proliferation is correlated with Cx32 expression, we evaluated Ki67 expression in a gastric cancer mouse model.

Methods

In human and mouse, normal stomach and gastric adenocarcinoma tissues were used for immunohistochemical analyses.

Results

Cx32 was detected at cell–cell (intercellular) contact points in normal cells and exhibited punctate intercellular and intracytoplasmic staining in cancer cells. The frequency of Cx32 loss of expression was significantly higher in human adenocarcinomas than in normal stomach. As tumor cells were less differentiated, Cx32 expression levels and intercellular and intracytoplasmic staining were also significantly lower. The Cx32 expression pattern in the mouse gastric cancer model was similar in several important respects to that of human. In mucous metaplasia of the mouse stomach, Cx32 was mainly expressed in the cytoplasm of epithelial cells. There was also an inverse correlation between Cx32 expression and cell proliferation in mouse tumors. However, there was no difference in the levels of Cx32 mRNA between normal and cancerous tissues.

Conclusions

These findings suggest that altered Cx32 expression, a loss of intercellular Cx32 and a gain of intracytoplasmic Cx32 in the form of punctate “dot”, plays an important role in the formation of gastric adenocarcinomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Loewenstein WR, Rose B. The cell–cell channel in the control of growth. Semin Cell Biol. 1992;3(1):59–79.

    Article  PubMed  CAS  Google Scholar 

  2. Vinken M, et al. Biology and pathobiology of gap junctional channels in hepatocytes. Hepatology. 2008;47(3):1077–1088.

    Article  PubMed  CAS  Google Scholar 

  3. Alexander DB, Goldberg GS. Transfer of biologically important molecules between cells through gap junction channels. Curr Med Chem. 2003;10(19):2045–2058.

    Article  PubMed  CAS  Google Scholar 

  4. Willecke K, et al. Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem. 2002;383(5):725–737.

    Article  PubMed  CAS  Google Scholar 

  5. Monaghan P, et al. Gap junction distribution and connexin expression in human breast. Exp Cell Res. 1996;223(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  6. Conklin C, et al. Tissue microarray analysis of connexin expression and its prognostic significance in human breast cancer. Cancer Lett. 2007;255(2):284–294.

    Article  PubMed  CAS  Google Scholar 

  7. Nakashima Y, et al. Expression of gap junction protein connexin32 in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. J Gastroenterol. 2004;39(8):763–768.

    Article  PubMed  CAS  Google Scholar 

  8. Kanczuga-Koda L, et al. Alterations in connexin26 expression during colorectal carcinogenesis. Oncology. 2005;68(2–3):217–222.

    Article  PubMed  CAS  Google Scholar 

  9. Hong R, Lim SC. Pathological significance of connexin26 expression in colorectal adenocarcinoma. Oncol Rep. 2008;19(4):913–919.

    PubMed  Google Scholar 

  10. Inose T, et al. Correlation between connexin26 expression and poor prognosis of esophageal squamous cell carcinoma. Ann Surg Oncol. 2009;16(6):1704–1710.

    Article  PubMed  Google Scholar 

  11. Jamieson S, et al. Expression of gap junction proteins connexin26 and connexin43 in normal human breast and in breast tumours. J Pathol. 1998;184(1):37–43.

    Article  PubMed  CAS  Google Scholar 

  12. Avanzo JL, et al. Altered expression of connexins in urethane-induced mouse lung adenomas. Life Sci. 2006;79(23):2202–2208.

    Article  PubMed  CAS  Google Scholar 

  13. Udaka N, Miyagi Y, Ito T. Connexin expression in mouse lung tumor. Cancer Lett. 2007;246(1–2):224–229.

    Article  PubMed  CAS  Google Scholar 

  14. Parkin DM, Laara E, Muir CS. Estimates of the worldwide frequency of sixteen major cancers in 1980. Int J Cancer. 1988;41(2):184–197.

    Article  PubMed  CAS  Google Scholar 

  15. Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology. 2007;133(2):659–672.

    Article  PubMed  CAS  Google Scholar 

  16. Correa P. Human gastric carcinogenesis: A multistep and multifactorial process—First American Cancer Society Award lecture on cancer epidemiology and prevention. Cancer Res. 1992;52(24):6735–6740.

    PubMed  CAS  Google Scholar 

  17. Marshall B. Helicobacter pylori: Past, present and future. Keio J Med. 2003;52(2):80–85.

    PubMed  CAS  Google Scholar 

  18. Fink C, et al. Specific localisation of gap junction protein connexin32 in the gastric mucosa of horses. Histochem Cell Biol. 2006;125(3):307–313.

    Article  PubMed  CAS  Google Scholar 

  19. Radebold K, et al. Gap junctional channels regulate acid secretion in the mammalian gastric gland. J Membr Biol. 2001;183(3):147–153.

    Article  PubMed  CAS  Google Scholar 

  20. Uchida Y, et al. Immunohistochemistry of gap junctions in normal and diseased gastric mucosa of humans. Gastroenterology. 1995;109(5):1492–1496.

    Article  PubMed  CAS  Google Scholar 

  21. American Joint Committee on Cancer, A.C.S. AJCC Cancer Staging Manual. New York: Springer; 2002.

    Google Scholar 

  22. Han SU, et al. Helicobacter pylori infection promotes gastric carcinogenesis in a mice model. J Gastroenterol Hepatol. 2002;17(3):253–261.

    Article  PubMed  Google Scholar 

  23. Kim B, et al. Cell cycle regulators, APC/beta-catenin, NF-kappaB and Epstein-Barr virus in gastric carcinomas. Pathology. 2010;42(1):58–65.

    Article  PubMed  CAS  Google Scholar 

  24. Madore J, et al. Characterization of the molecular differences between ovarian endometrioid carcinoma and ovarian serous carcinoma. J Pathol. 2010;220(3):392–400.

    PubMed  Google Scholar 

  25. Grizzle WE, Myers RB, Manne U, Srivastava S, eds. Immunohistochemical evaluation of biomarkers in prostatic and colorectal neoplasia. Tumor marker protocols, Hanausek M, Walaszek Z, eds. Totowa, NJ: Human Press; 1998:143–160.

  26. Mehta PP, et al. Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev Genet. 1999;24(1–2):91–110.

    Article  PubMed  CAS  Google Scholar 

  27. Shimoyama Y, Hirohashi S. Expression of E- and P-cadherin in gastric carcinomas. Cancer Res. 1991;51(8):2185–2192.

    PubMed  CAS  Google Scholar 

  28. Jinn Y, Ichioka M, Marumo F. Expression of connexin32 and connexin43 gap junction proteins and E-cadherin in human lung cancer. Cancer Lett. 1998;127(1–2):161–169.

    Article  PubMed  CAS  Google Scholar 

  29. Shimoyama Y, Hirohashi S. Cadherin intercellular adhesion molecule in hepatocellular carcinomas: Loss of E-cadherin expression in an undifferentiated carcinoma. Cancer Lett. 1991;57(2):131–135.

    Article  PubMed  CAS  Google Scholar 

  30. Ogawa K, et al. Beta-catenin mutations are frequent in hepatocellular carcinomas but absent in adenomas induced by diethylnitrosamine in B6C3F1 mice. Cancer Res. 1999;59(8):1830–1833.

    PubMed  CAS  Google Scholar 

  31. Takayama T, et al. Beta-catenin expression in human cancers. Am J Pathol. 1996;148(1):39–46.

    PubMed  CAS  Google Scholar 

  32. Xu HT, et al. Connexin 43 recruits E-cadherin expression and inhibits the malignant behaviour of lung cancer cells. Folia Histochem Cytobiol. 2008;46(3):315–321.

    Article  PubMed  CAS  Google Scholar 

  33. Schwarz M, et al. Role of connexin32 and beta-catenin in tumor promotion in mouse liver. Toxicol Pathol. 2003;31(1):99–102.

    PubMed  CAS  Google Scholar 

  34. Sanches DS, et al. Expression of connexins in normal and neoplastic canine bone tissue. Vet Pathol. 2009;46(5):846–859.

    Article  PubMed  CAS  Google Scholar 

  35. Edwards GO, et al. A quantitative inverse relationship between connexin32 expression and cell proliferation in a rat hepatoma cell line. Toxicology. 2008;253(1–3):46–52.

    Article  PubMed  CAS  Google Scholar 

  36. Bouzubar N, et al. Ki67 immunostaining in primary breast cancer: pathological and clinical associations. Br J Cancer. 1989;59(6):943–947.

    Article  PubMed  CAS  Google Scholar 

  37. Wang W, Luo H, Wang A. Expression of survivin and correlation with PCNA in osteosarcoma. J Surg Oncol. 2006;93(7):578–584.

    Article  PubMed  CAS  Google Scholar 

  38. Krutovskikh V, et al. Altered homologous and heterologous gap-junctional intercellular communication in primary human liver tumors associated with aberrant protein localization but not gene mutation of connexin32. Int J Cancer. 1994;56(1):87–94.

    Article  PubMed  CAS  Google Scholar 

  39. Vinken M, et al. Epigenetic regulation of gap junctional intercellular communication: More than a way to keep cells quiet? Biochim Biophys Acta. 2009;1795(1):53–61.

    PubMed  CAS  Google Scholar 

  40. Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res. 2006;34(20):5863–5871.

    Article  PubMed  CAS  Google Scholar 

  41. Cronier L, et al. Gap junctions and cancer: New functions for an old story. Antioxid Redox Signal. 2009;11(2):323–338.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Brain Korea 21 Project. This study was partially supported by the Research Institute for Veterinary Science, Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jee, H., Nam, K.T., Kwon, HJ. et al. Altered Expression and Localization of Connexin32 in Human and Murine Gastric Carcinogenesis. Dig Dis Sci 56, 1323–1332 (2011). https://doi.org/10.1007/s10620-010-1467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1467-z

Keywords

Navigation