Skip to main content
Log in

Growth of M. avium Subspecies Paratuberculosis in Culture Is Enhanced by Nicotinic Acid, Nicotinamide, and α and β Nicotinamide Adenine Dinucleotide

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Without known mechanisms of action, Crohn’s disease is exacerbated, and ulcerative colitis is improved, by the use of tobacco. Mycobacterium avium subspecies paratuberculosis (MAP) may be zoonotic. We hypothesized that tobacco components might alter the growth kinetics of MAP, explaining these divergent clinical observations.

Methods

The effect of nicotine, nicotinic acid, nicotinamide and α and β nicotinamide adenine dinucleotide (α and β NAD) were studied on eight strains of three mycobacterial species (MAP, M. avium and M. tb. complex). Data are obtained as “cumulative growth index,” (cGI) and presented as “percent increase in cumulative GI” (% + ΔcGI).

Results

Nicotinic acid enhances the two human MAP isolates (Dominic; 225% + ΔcGI and UCF-4; 92% + ΔcGI) and M. avium (ATCC 25291; 175% + ΔcGI). Nicotinamide (at 6.4 µg/ml) enhances the human MAP isolates (Dominic; 156% + ΔcGI and UCF-4; 79% + ΔcGI) and M. avium (ATCC 25291; 144% + ΔcGI.) Both α and β NAD enhance Dominic; (135 and 150 % + ΔcGI) and UCF-4; (81 and 79% + ΔcGI). At the doses tested, nicotine has no effect on any strain studied.

Conclusions

We show enhancement of MAP growth by nicotinic acid, one of ≥4,000 tobacco-related molecules, its amide, nicotinamide and α and β NAD. Pure nicotine has no enhancing effect at the doses studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Birrenbach T, Bocker U. Inflammatory bowel disease and smoking: a review of epidemiology, pathophysiology, and therapeutic implications. Inflamm Bowel Dis. 2004;10:848–859.

    Article  PubMed  Google Scholar 

  2. Karban A, Eliakim R. Effect of smoking on inflammatory bowel disease: is it disease or organ specific? World J Gastroenterol. 2007;13:2150–2152.

    CAS  PubMed  Google Scholar 

  3. Regueiro M, Kip KE, Cheung O, Hegazi RA, Plevy S. Cigarette smoking and age at diagnosis of inflammatory bowel disease. Inflamm Bowel Dis. 2005;11:42–47.

    Article  PubMed  Google Scholar 

  4. Cosnes J, Carbonnel F, Carrat F, Beaugerie L, Cattan S, Gendre J. Effects of current and former cigarette smoking on the clinical course of Crohn’s disease. Aliment Pharmacol Ther. 1999;13:1403–1411.

    Article  CAS  PubMed  Google Scholar 

  5. Lewis CM, Whitwell SC, Forbes A, Sanderson J, Mathew CG, Marteau TM. Estimating risks of common complex diseases across genetic and environmental factors: the example of Crohn disease. J Med Genet. 2007;44:689–694.

    Article  CAS  PubMed  Google Scholar 

  6. Aldhous MC, Drummond HE, Anderson N, et al. Smoking habit and load influence age at diagnosis and disease extent in ulcerative colitis. Am J Gastroenterol. 2007;102:589–597.

    Article  PubMed  Google Scholar 

  7. Beaugerie L, Massot N, Carbonnel F, Cattan S, Gendre JP, Cosnes J. Impact of cessation of smoking on the course of ulcerative colitis. Am J Gastroenterol. 2001;96:2113–2116.

    Article  CAS  PubMed  Google Scholar 

  8. Pullan RD, Rhodes J, Ganesh S, et al. Transdermal nicotine for active ulcerative colitis. N Engl J Med. 1994;330:811–815.

    Article  CAS  PubMed  Google Scholar 

  9. McGrath J, McDonald JW, Macdonald JK. Transdermal nicotine for induction of remission in ulcerative colitis. Cochrane Database Syst Rev. 2004:CD004722.

  10. Dube MF, Green CR. Recent advances in tobacco science: methods of collecting of smoke for analytical purposes. 36th Tobacco Chemists Research Conference. Symposium on the Formation, Analysis and Composition of Tobacco Smoke. In 36th Tobacco Chemists Research Conference. Symposium on the Formation, Analysis and Composition of Tobacco Smoke. Raleigh NC, 1982;42–102.

  11. Jenkins RA, Guerin MR, Tompkins BA. The Chemistry of Environmental Tobacco: Composition and Measurement. Boca Raton, Florida, 33431, USA: CRC Press; 2000.

  12. Aldhous MC, Noble CL, Satsangi J. Dysregulation of human β-Defensin-2 protein in inflammatory bowel disease. PLoS ONE 2009;4:e6285.

    Google Scholar 

  13. Nielsen OH, Bjerrum JT, Csillag C, Nielsen FC, Olsen Jr. Influence of smoking on colonic gene expression profile in Crohn’s disease. PLoS ONE 2009;4:e6210.

  14. Naser SA, Ghobrial G, Miles H. Effect of nicotine on inflammatory bowel disease. Am J Gastroenterol. 2001;96:3455–3457.

    Article  CAS  PubMed  Google Scholar 

  15. Johne HA, Frothingham L. Ein eigenthumlicher fall von tuberculose beim rind (A particular case of tuberculosis in a cow). Dtsch Zeitschr Tiermed Vergl Pathol. 1895;21:438–454.

    Google Scholar 

  16. Mishina D, Katsel P, Brown ST, Gilberts EC, Greenstein RJ. On the etiology of Crohn disease. Proc Natl Acad Sci USA. 1996;93:9816–9820.

    Article  CAS  PubMed  Google Scholar 

  17. Ellingson JL, Anderson JL, Koziczkowski JJ, et al. Detection of viable Mycobacterium avium subsp. paratuberculosis in retail pasteurized whole milk by two culture methods and PCR. J Food Prot. 2005;68:966–972.

    CAS  PubMed  Google Scholar 

  18. Grant IR, Hitchings EI, McCartney A, Ferguson F, Rowe MT. Effect of commercial-scale high-temperature, short-time pasteurization on the viability of Mycobacterium paratuberculosis in naturally infected cows’ milk. Appl Environ Microbiol. 2002;68:602–607.

    Article  CAS  PubMed  Google Scholar 

  19. Ayele WY, Svastova P, Roubal P, Bartos M, Pavlik I. Mycobacterium avium subspecies paratuberculosis cultured from locally and commercially pasteurized cow’s milk in the Czech Republic. Appl Environ Microbiol. 2005;71:1210–1214.

    Article  CAS  PubMed  Google Scholar 

  20. Greenstein RJ, Collins MT. Emerging pathogens: is Mycobacterium avium subspecies paratuberculosis zoonotic? Lancet. 2004;364:396–397.

    Article  PubMed  Google Scholar 

  21. Greenstein RJ. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect Dis. 2003;3:507–514.

    Article  PubMed  Google Scholar 

  22. Greenstein R, Gillis T, Scollard D, Brown S. Mycobacteria: leprosy, a battle turned; tuberculosis, a battle raging; paratuberculosis, a battle ignored. In: Fratamico P, Smith J, Brogden K, eds. Sequelae and Long-Term Consequences of Infectious Diseases. Washington, DC, 20036-2904: ASM Press. Am Soc Microbiol 2009;1:135–168.

  23. Stewart-Tull DES. Mycobacterium leprae—the bacteriologist’s enigma. In: Ratledge C, Stanford J, eds. The Biology of the Mycobacteria, Volume 1: Physiology, Identification, and Classification. New York: Academic Press; 1982;273–307.

  24. Chiodini RJ, Van Kruiningin HJ, Thayer WJ Jr, Coutu J. Spheroplastic phase of mycobacteria isolated from patients with Crohn’s disease. J Clin Microbiol. 1986;24:357–363.

    CAS  PubMed  Google Scholar 

  25. Chiodini RJ, Van Kruiningen HJ, Merkal RS, Thayer WR Jr, Coutu JA. Characteristics of an unclassified Mycobacterium species isolated from patients with Crohn’s disease. J Clin Microbiol. 1984;20:966–971.

    CAS  PubMed  Google Scholar 

  26. Naser SA, Ghobrial G, Romero C, Valentine JF. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet. 2004;364:1039–1044.

    Article  PubMed  Google Scholar 

  27. Naser SA, Schwartz D, Shafran I. Isolation of Mycobacterium avium subsp paratuberculosis from breast milk of Crohn’s disease patients. Am J Gastroenterol. 2000;95:1094–1095.

    Article  CAS  PubMed  Google Scholar 

  28. Bull TJ, McMinn EJ, Sidi-Boumedine K, et al. Detection and verification of Mycobacterium avium subsp. paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and without Crohn’s disease. J Clin Microbiol. 2003;41:2915–2923.

    Article  CAS  PubMed  Google Scholar 

  29. Greenstein RJ, Su L, Shahidi A, Brown ST. On the action of 5-amino-salicylic acid and sulfapyridine on M. avium including subspecies paratuberculosis. PLoS ONE 2007;2:e516.

    Google Scholar 

  30. Shin SJ, Collins MT. Thiopurine drugs (azathioprine and 6-mercaptopurine) inhibit Mycobacterium paratuberculosis growth in vitro. Antimicrob Agents Chemother. 2008;52:418–426.

    Article  CAS  PubMed  Google Scholar 

  31. Greenstein RJ, Su L, Brown ST. On the effect of thalidomide on Mycobacterium avium subspecies paratuberculosis in culture. Int J Infect Dis. 2009;13:e254–e263.

    Article  CAS  PubMed  Google Scholar 

  32. Greenstein RJ, Su L, Haroutunian V, Shahidi A, Brown ST. On the action of methotrexate and 6-mercaptopurine on M. avium subspecies paratuberculosis. PLoS ONE 2007;2:e161.

    Google Scholar 

  33. Greenstein RJ, Su L, Juste RA, Brown ST. On the action of cyclosporine A, rapamycin and tacrolimus on M. avium including subspecies paratuberculosis. PLoS ONE 2008;3:e2496.

    Google Scholar 

  34. Ridley DS, Jopling WH. A classification of leprosy for research purposes. Lepr Rev. 1962;33:119–128.

    CAS  PubMed  Google Scholar 

  35. Bertram MA, Inderlied CB, Yadegar S, Kolanoski P, Yamada JK, Young LS. Confirmation of the beige mouse model for study of disseminated infection with Mycobacterium avium complex. J Infect Dis. 1986;154:194–195.

    CAS  PubMed  Google Scholar 

  36. Damato JJ, Collins MT. Growth of Mycobacterium paratuberculosis in radiometric, Middlebrook and egg-based media. Vet Microbiol. 1990;22:31–42.

    Article  CAS  PubMed  Google Scholar 

  37. Rastogi N, Goh KS, Labrousse V. Activity of clarithromycin compared with those of other drugs against Mycobacterium paratuberculosis and further enhancement of its extracellular and intracellular activities by ethambutol. Antimicrob Agents Chemother. 1992;36:2843–2846.

    CAS  PubMed  Google Scholar 

  38. Greenstein RJ, Su L, Whitlock R, Brown ST. Monensin causes dose-dependent inhibition of Mycobacterium avium subspecies paratuberculosis in radiometric culture. Gut Pathogens 2009;1:4.

  39. Noufflard H, Deslandes M. Bactericidal action of isoniazid (isonicotinic acid hydrazide) on Mycobacterium tuberculosis. Ann Inst Pasteur (Paris) 1952;83:769–773.

    Google Scholar 

  40. Lowe J. Isoniazid in leprosy. Lancet. 1952;2:1012–1013.

    Article  CAS  PubMed  Google Scholar 

  41. Lehmann J. Para-aminosalicylic acid in the treatment of tuberculosis. Lancet. 1946;1:15–16.

    Article  CAS  PubMed  Google Scholar 

  42. Bernheim F. The effect of salicylate on the oxygen uptake of the Tubercle bacillus. Science 1940;92:204.

    Google Scholar 

  43. Griffith GD, Griffith T, Byerrum RU. Nicotinic acid as a metabolite of nicotine in Nicotiana rustica. J Biol Chem. 1960;235:3536–3538.

    CAS  PubMed  Google Scholar 

  44. Weidel H. Zur Kenntniss des Nicotins. Justus Liebig’s Annalen der Chemie und Pharmacie. 1873;165:328–349.

    Article  Google Scholar 

  45. Robitzek EH, Selikoff IJ. Hydrazine derivatives of isonicotinic acid (rimifon marsilid) in the treatment of active progressive caseous-pneumonic tuberculosis; a preliminary report. Am Rev Tuberc. 1952;65:402–428.

    CAS  PubMed  Google Scholar 

  46. Pavia CS, Pierre A, Nowakowski J. Antimicrobial activity of nicotine against a spectrum of bacterial and fungal pathogens. J Med Microbiol. 2000;49:675–676.

    CAS  PubMed  Google Scholar 

  47. Kotian M, Kumar A, Suresh KPS, Shivananda PO, Achyutha Rao KN. A preliminary study on the effect of nicotine on growth of Mycobacteria. Indian Journal of Tuberculosis. 1984;31:151–158.

    Google Scholar 

  48. Zelitch I. The isolation and action of crystalline glyoxylic acid reductase from tobacco leaves. J Biol Chem. 1955;216:553–575.

    CAS  PubMed  Google Scholar 

  49. Zelitch I, Ochoa S. Oxidation and reduction of glycolic and glyoxylic acids in plants. I. Glycolic and oxidase. J Biol Chem. 1953;201:707–718.

    CAS  PubMed  Google Scholar 

  50. Hickey RJ. Nicotine and ulcerative colitis. Gut. 1989;30:416–418.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This material is the result of work supported with resources and the use of facilities at the James J. Peters VAMC, Bronx, NY. This study was supported by the Division of Infectious Diseases at the James J. Peters VAMC, Bronx, NY.

Funding statement

We thank Becton-Dickinson for providing the Bactec® vials. B-D had no role in the design of the study, performing the experiments, writing the manuscript, or the decision to submit for publication. No other extramural funds were obtained.

Transparency statement

RJG has submitted provisional patents based on the hypotheses tested in this and prior publications; STB was a member of the National Academy of Sciences of the USA panel that issued the Report “Diagnosis and Control of Johne’s Disease.” ISBN 0-309-08611-6.; LS: Has no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Greenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenstein, R.J., Su, L. & Brown, S.T. Growth of M. avium Subspecies Paratuberculosis in Culture Is Enhanced by Nicotinic Acid, Nicotinamide, and α and β Nicotinamide Adenine Dinucleotide. Dig Dis Sci 56, 368–375 (2011). https://doi.org/10.1007/s10620-010-1301-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-010-1301-7

Keywords

Navigation