Skip to main content
Log in

Effect of Azithromycin on Acute Inflammatory Lesions and Colonic Bacterial Load in a Murine Model of Experimental Colitis

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

The aim of this study was to investigate the effect of the macrolide antibiotic azithromycin on mucosal changes and colonic bacterial load in a murine model of colitis.

Methods

Colitis was induced in CD1 mice using enema of 0.2% solution of dinitrofluorobenzene, combined with skin sensitization. Four experimental groups of animals (N = 10 per group) were treated with 50 mg/kg/day azithromycin (AZ) or metronidazole (MN) perorally, starting 24 h before (AZ−1, MN−1) or 6 h after (AZ+1, MN+1) induction of colitis and for consecutive 5 days. Additional experimental mice group was treated with 10 mg/kg/day methylprednisolone intraperitoneally after induction of experimental colitis in the same manner (MP). Two control groups consisted of healthy animals (C) that received the challenge enema with phosphate-buffered saline (PBS) and animals with experimental colitis (chall) treated with equivolume of PBS perorally. Clinical score (0–5) and histopathologic score (0–30) were used to assess inflammatory changes, and colon washings were used to determine changes in bacterial load.

Results

The anti-inflammatory effect of azithromycin did not differ from the effect of methylprednisolone, when compared with control group with experimental colitis. Metronidazole did not show a significant anti-inflammatory effect. Number of colonic bacteria did not differ significantly between control and experimental groups of animals.

Conclusions

We documented the anti-inflammatory effect of azithromycin in a murine model of acute colitis, suggesting that effects were targeted to oxidative burst and on mucosal/bacterial interface, independent of luminal bacterial load. Further studies should be focused on effect of azithromycin on the role of bacterial biofilm in perpetuation of chronic intestinal inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sands BE. Therapy of inflammatory bowel disease. Gastroenterology. 2000;118:68–82.

    Article  Google Scholar 

  2. Camma C, Giunta M, Rosselli M, Cottone M. Mesalamine in the maintenance treatment of Crohn′s disease: a meta-analysis adjusted for confounding variables. Gastroenterology. 1997;113:1465–1473.

    Article  CAS  PubMed  Google Scholar 

  3. Steinhart AH, Feagan BG, Wong CJ, et al. Combined budesonide and antibiotic therapy for active Crohn’s disease: a randomized controlled trial. Gastroenterology. 2002;123(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  4. Greenbloom SL, Steinhart AH, Greenberg GR. Combination ciprofloxacin and metronidazole for active Crohn’s disease. Can J Gastroenterol. 1998;12(1):53–56.

    CAS  PubMed  Google Scholar 

  5. Labro MT. Anti-inflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother. 1998;41(Suppl 13):37–46.

    Article  CAS  PubMed  Google Scholar 

  6. Shafran I, Kugler L, El-Zaatari FA, Naser SA, Sandoval J. Open clinical trial of rifabutin and clarithromycin therapy in Crohn’s disease. Dig Liver Dis. 2002;34(1):22–28.

    Article  CAS  PubMed  Google Scholar 

  7. Allen SD, Emery CL, Siders JA. Clostridium. U:Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology Washington DC: ASM; 1999, pp 654–671.

  8. Brkić T, Banić M, Anić B, et al. A model of inflammatory bowel disease induced by 2, 4-dinitrofluorobenzene in previously sensitized BALB-c mice. Scand J Gastroenterol. 1992;27:184–188.

    Article  PubMed  Google Scholar 

  9. Banić M, Brkić T, Anić B, et al. Effect of methylprednisolone on small bowell, spleen and liver changes in a murine model of inflammatory bowel disease. Aliment Pharmacol Ther. 1993;7:201–206.

    PubMed  Google Scholar 

  10. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC, eds. The Anaerobic Bacteria Color atlas and textbook of Diagnostic Microbiology. Philadelphia: Lippincott; 1997:709–784.

    Google Scholar 

  11. Hunter MM, Wang A, Hirota CL, McKay DM. Neutralizing Anti-IL-10 antibody blocks the protective effect of tapeworm infection in a murine model of chemically induced colitis. J Immunol. 2005;174:7368–7375.

    CAS  PubMed  Google Scholar 

  12. Anić B, Brkić T, Banić M, et al. Histopathologic features of T-cell mediated colonic injury induced with 2, 4-dinitrofluorobenzene in BALB/c mice. Acta Med Croat. 1997;51:11–14.

    Google Scholar 

  13. Banic M, Anic B, Brkic T, et al. Effect of cyclosporine in a murine model of experimental colitis. Dig Dis Sci. 2002;47(6):1362–1368.

    Article  CAS  PubMed  Google Scholar 

  14. Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC, eds. Introduction to microbiology: Part I: The role of the Microbiology Laboratory in the Diagnosis of Infectious Diseases:Guidelines to Practice and Management. Color atlas and textbook of Diagnostic Microbiology. Philadelphia: Lippincott; 1997:69–120.

    Google Scholar 

  15. Jousimies-Somer HR, Summanen PH, Finegold SM. Bacteroides, Porphyromonas, Prevotella, Fusobacterium, and Other Anaerobic Gram-Negative Rods and Cocci. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology. Washington DC: ASM Press; 1999:690–711.

    Google Scholar 

  16. Hillier SL, Moncla BJ. Peptostreptococcus, Propionibacterium, Lactobacillus, Actinomyces and Other Non-Sporeforming Anaerobic Gram-Positive Bacteria. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, eds. Manual of Clinical Microbiology. Washington DC: ASM Press; 1999:672–687.

    Google Scholar 

  17. Dawson-Saunders B, Trapp RG. Basic and clinical biostatistics. London, New Jersey: Prentice-Hall; 1994.

    Google Scholar 

  18. Strober W, Fuss IJ, Blumberg RS. The immunology of mucosal models of inflammation. Annu Rev Immunol. 2002;20:495–549.

    Article  CAS  PubMed  Google Scholar 

  19. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology. 1995;109:1344–1367.

    Article  CAS  PubMed  Google Scholar 

  20. Xiao WB, Liu YL. Changes of CD8+CD28- T regulatory cells in rat model of colitis induced by 2, 4-dinitrofluorobenzene. World J Gastroenterol. 2003;9(11):2528–2532.

    CAS  PubMed  Google Scholar 

  21. Barnich Nicolas, Darfeuille-Michaud Arlette. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol. 2007;13(42):5571–5576.

    CAS  PubMed  Google Scholar 

  22. Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol. 1997;148:567–576.

    Article  CAS  PubMed  Google Scholar 

  23. Blondeau JM, DeCarolis E, Metzler KL, Hansen GT. The macrolides. Expert Opin Investig Drugs. 2002;11(2):189–215.

    Article  CAS  PubMed  Google Scholar 

  24. Labro MT. Interference of antibacterial agents with phagocyte functions: immunomodulation or “immuno-fairy tales”? Clin Microbiol Rev. 2000;13(4):615–650.

    Article  CAS  PubMed  Google Scholar 

  25. Parnham MJ, Čulic O, Eraković V, et al. Modulation of neutrophil and inflammation markers in chronic obstructive pulmonary disease by short-term azithromycin treatment. Eur J Pharmacol. 2005;517:132–143.

    Article  CAS  PubMed  Google Scholar 

  26. Labro MT. Interactions entre les agents anti-infectieux et les phagocytes. Presse Med. 1995;24:992–998.

    CAS  PubMed  Google Scholar 

  27. Rennick DM, Fort MM. Lessons from genetically engineered animal models. XII. IL-10-deficient (IL-10(-/-) mice and intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2000;278(6):G829–G833.

    CAS  PubMed  Google Scholar 

  28. Arabi Y, Dimock F, Burdon DW, Alexander-Wiliams J, Keighley MR. Influence of neomycin and metronidazole on colonic microflora of volunteers. J Antimicrob Chemother. 1979;5:531–537.

    Article  CAS  PubMed  Google Scholar 

  29. Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol. 1997;148:567–576.

    Article  CAS  PubMed  Google Scholar 

  30. Mahgoub A, El-Medany A, Mustafa A, Arafah M, Moursi M. Azithromycin and erythromycin ameliorate the extent of colonic d+amage induced by acetic acid in rats. Toxicol Appl Pharmacol. 2005;205(1):43–52.

    Article  CAS  PubMed  Google Scholar 

  31. Menozzi A, Pozzoli C, Poli E, et al. Effect of the macrolide antibacterial drug, tylosin, on TNBS-induced colitis in the rat. Pharmacology. 2005;74(3):135–142.

    Article  CAS  PubMed  Google Scholar 

  32. Yamada T, Deitch E, Specian RD, Perry MA, Sartor RB, Grisham MB. Mechanisms of acute and chronic intestinal inflammation induced by indomethacin. Inflammation. 1993;17:641–662.

    Article  CAS  PubMed  Google Scholar 

  33. Matute AJ, Schurink CA, Krijnen RM, Florijn A, Rozenberg-Arska M, Hoepelman IM. Double-blind, placebo-controlled study comparing the effect of azithromycin with clarithromycin on oropharyngeal and bowel microflora in volunteers. Eur J Clin Microbiol Infect Dis. 2002;21(6):427–431.

    Article  CAS  PubMed  Google Scholar 

  34. Canbakan B, Sentürk H, Tahan V, Yildirim B, Özbay G, Hatemi I, Oktay E: Neutrophil oxidative burst: A possible pathogenic mechanism for tissue damage in ulcerative colitis. Abstract book. Inflammatory bowel disease: Translation from basic research to clinical practice, Dubrovnik: Falk Symposium 140; 2004, A43.

  35. Rainis T, Maor I, Lanir A, Lavy A. Oxidative stress and neutrophil superoxide release in patients with Crohn’s disease: Distinction between active and non-active disease. Abstract book. Inflammatory bowel disease: Translation from basic research to clinical practice, Dubrovnik: Falk Symposium 140; 2004, A44.

  36. Popovic M, Janicijevic-Hudomal S, Kaurinovic B, Rasic J, Trivic S. Antioxidant effects of some drugs on ethanol-induced ulcers. Molecules. 2009;14:816–826.

    Article  PubMed  Google Scholar 

  37. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–3389.

    Article  PubMed  Google Scholar 

  38. Barnich N, Darfeuille-Michaud A. Role of bacteria in the etiopathogenesis of inflammatory bowel disease. World J Gastroenterol. 2007;13(42):5571–5576.

    CAS  PubMed  Google Scholar 

  39. Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents. 2008;31(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  40. Macfarlane S, Dillon JF. Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol. 2007;102(5):1187–1196.

    Article  CAS  PubMed  Google Scholar 

  41. Giamarellos-Bourboulis EJ. Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators. Int J Antimicrob Agents. 2008;31(1):12–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Pleško.

Additional information

Statement

The manuscript “Effect of Azithromycin on Acute Inflammatory Lesions and Colonic Bacterial Load in A Murine model of Experimental Colitis” has been approved by all authors. None of the material in this manuscript has been published previously in any form and none of this material is currently under consideration for publication elsewhere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pleško, S., Banić, M., Plečko, V. et al. Effect of Azithromycin on Acute Inflammatory Lesions and Colonic Bacterial Load in a Murine Model of Experimental Colitis. Dig Dis Sci 55, 2211–2218 (2010). https://doi.org/10.1007/s10620-009-1034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-1034-7

Keywords

Navigation