Skip to main content

Advertisement

Log in

Highly Purified Eicosapentaenoic Acid Ethyl Ester Prevents Development of Steatosis and Hepatic Fibrosis in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

Pathogenesis of nonalcoholic steatohepatitis (NASH) is considered to be involved in fat accumulation, oxidative stress, inflammation, and fibrosis in liver, but no drug therapy has been established as yet. Eicosapentaenoic acid (EPA) is an agent used clinically to treat hypertriglyceridemia, and has been reported to suppress reactive oxygen species and inflammation. Here, we aimed to assess the effect of EPA on progression of hepatic fibrosis in an animal model of NASH.

Methods

Wistar rats were fed a methionine- and choline-deficient (MCD) diet and given EPA ethyl ester (EPA-E) (1,000 mg/kg/day) or vehicle by gavage for 8 or 20 weeks.

Results

The MCD diet caused development of hepatic fibrosis and nodule formation at 20 weeks. EPA-E treatment significantly suppressed MCD-induced increase in fibrosis and hepatic hydroxyproline, and inhibited nodule formation. EPA-E treatment also decreased hepatic transforming growth factor (TGF)-β1, and messenger RNA (mRNA) levels of connective tissue growth factor. EPA-E suppressed MCD-induced elevation of serum levels of ferritin, 8-isoprostane, soluble tumor necrosis factor receptor 1 (sTNFR1), and sTNFR2 at 20 weeks, and hepatic triglyceride accumulation at 8 weeks.

Conclusions

EPA-E prevents progression of hepatic fibrosis in an MCD-induced NASH model with reduction of oxidative stress, inflammation, and initial hepatic steatosis. Thus, EPA-E treatment may be a potential therapy to treat NASH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Duvnjak M, Lerotić I, Baršić N, Tomašić V, Virović Jukić L, Velagić V. Pathogenesis and management issues for non-alcoholic fatty liver disease. World J Gastroenterol. 2007;13:4539–4550.

    CAS  PubMed  Google Scholar 

  2. Carpentier YA, Portois L, Malaisse WJ. n-3 fatty acids and the metabolic syndrome. Am J Clin Nutr. 2006;83:1499S–1504S.

    CAS  PubMed  Google Scholar 

  3. Lee KS, Buck M, Houglum K, Chojkier M. Activation of hepatic stellate cells by TGFα and collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest. 1995;96:2461–2468.

    Article  CAS  PubMed  Google Scholar 

  4. Uygun A, Kadayifci A, Isik AT, et al. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther. 2004;19:537–544.

    Article  CAS  PubMed  Google Scholar 

  5. Belfort R, Harrison SA, Brown K, et al. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med. 2006;355:2297–2307.

    Article  CAS  PubMed  Google Scholar 

  6. Adams LA, Angulo P. Vitamins E and C for the treatment of NASH: Duplication of results but lack of demonstration of efficacy. Am J Gastroenterol. 2003;98:2348–2350.

    Article  CAS  PubMed  Google Scholar 

  7. Nakano S, Nagasawa T, Ijiro T, et al. Bezafibrate prevents hepatic stellate cell activation and fibrogenesis in a murine steatohepatitis model, and suppresses fibrogenic response induced by transforming growth factor-β1 in a cultured stellate cell line. Hepatol Res. 2008;38:1026–1039.

    Article  CAS  PubMed  Google Scholar 

  8. Lombardo YB, Chicco AG. Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review. J Nutr Biochem. 2006;17:1–13.

    Article  CAS  PubMed  Google Scholar 

  9. Spadaro L, Magliocco O, Spampinato D, et al. Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease. Dig Liver Dis. 2008;40:194–199.

    Article  CAS  PubMed  Google Scholar 

  10. Kurihara T, Akimoto M, Ishiguro H, et al. Effects of eicosapentaenoic acid on blood rheology in hyperlipidemic fatty liver patients. Hemorheol Relat Res. 1999;2:1–7.

    Google Scholar 

  11. Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): A randomised open-label, blinded endpoint analysis. Lancet. 2007;369:1090–1098.

    Article  CAS  PubMed  Google Scholar 

  12. Kajikawa S, Harada T, Kawashima A, Imada K, Mizuguchi K. Highly purified eicosapentaenoic acid prevents the progression of hepatic steatosis by repressing monounsaturated fatty acid synthesis in high-fat/high-sucrose diet-fed mice. Prostaglandins Leukot Essent Fatty Acids. 2009;80:229–238.

    Article  CAS  PubMed  Google Scholar 

  13. Clarke SD. Nonalcoholic steatosis and steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription. Am J Physiol Gastrointest Liver Physiol. 2001;281:G865–869.

    CAS  PubMed  Google Scholar 

  14. Demoz A, Willumsen N, Berge RK. Eicosapentaenoic acid at hypotriglyceridemic dose enhances the hepatic antioxidant defense in mice. Lipids. 1992;27:968–971.

    Article  CAS  PubMed  Google Scholar 

  15. Kajikawa S, Harada T, Kawashima A, Imada K, Mizuguchi K. Suppression of hepatic fat accumulation by highly purified eicosapentaenoic acid prevents the progression of d-galactosamine-induced hepatitis in mice fed with a high-fat/high-sucrose diet. Biochim Biophys Acta. 2009;1791:281–288.

    CAS  PubMed  Google Scholar 

  16. Zhao Y, Joshi-Barve S, Barve S, Chen LH. Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J Am Coll Nutr. 2004;23:71–78.

    CAS  PubMed  Google Scholar 

  17. Sierra S, Lara-Villoslada F, Comalada M, Olivares M, Xaus J. Dietary eicosapentaenoic acid and docosahexaenoic acid equally incorporate as decosahexaenoic acid but differ in inflammatory effects. Nutrition. 2008;24:245–254.

    Article  CAS  PubMed  Google Scholar 

  18. Weltman MD, Farrell GC, Liddle C. Increased hepatocyte CYP2E1 expression in a rat nutritional model of hepatic steatosis with inflammation. Gastroenterology. 1996;111:1645–1653.

    Article  CAS  PubMed  Google Scholar 

  19. Takeo S, Nasa Y, Tanonaka K, et al. Effects of long-term treatment with eicosapentaenoic acid on the heart subjected to ischemia/reperfusion and hypoxia/reoxygenation in rats. Mol Cell Biochem. 1998;188:199–208.

    Article  CAS  PubMed  Google Scholar 

  20. Yamada H, Yoshida M, Nakano Y, et al. In vivo and in vitro inhibition of monocyte adhesion to endothelial cells and endothelial adhesion molecules by eicosapentaenoic acid. Arterioscler Thromb Vasc Biol. 2008;28:2173–2179.

    Article  CAS  PubMed  Google Scholar 

  21. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

    CAS  PubMed  Google Scholar 

  22. Woessner JF Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93:440–447.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34:745–750.

    CAS  PubMed  Google Scholar 

  24. Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta. 2006;364:33–60.

    Article  CAS  PubMed  Google Scholar 

  25. Haukeland JW, Damås JK, Konopski Z, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol. 2006;44:1167–1174.

    Article  CAS  PubMed  Google Scholar 

  26. Sumida Y, Nakashima T, Yoh T, et al. Serum thioredoxin levels as a predictor of steatohepatitis in patients with nonalcoholic fatty liver disease. J Hepatol. 2003;38:32–38.

    Article  CAS  PubMed  Google Scholar 

  27. Tokushige K, Hashimoto E, Tsuchiya N, Kaneda H, Taniai M, Shiratori K. Clinical significance of soluble TNF receptor in Japanese patients with non-alcoholic steatohepatitis. Alcohol Clin Exp Res. 2005;29:298S–303S.

    CAS  PubMed  Google Scholar 

  28. Shapiro L, Clark BD, Orencole SF, Poutsiaka DD, Granowitz EV, Dinarello CA. Detection of tumor necrosis factor soluble receptor p55 in blood samples from healthy and endotoxemic humans. J Infect Dis. 1993;167:1344–1350.

    CAS  PubMed  Google Scholar 

  29. George J, Pera N, Phung N, Leclercq I, Yun Hou J, Farrell G. Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol. 2003;39:756–764.

    Article  CAS  PubMed  Google Scholar 

  30. Veteläinen R, van Vliet A, van Gulik TM. Essential pathogenic and metabolic differences in steatosis induced by choline or methione-choline deficient diets in a rat model. J Gastroenterol Hepatol. 2007;22:1526–1533.

    Article  PubMed  Google Scholar 

  31. Kennedy JI Jr, Chandler DB, Fulmer JD, Wert MB, Grizzle WE. Dietary fish oil inhibits bleomycin-induced pulmonary fibrosis in the rat. Exp Lung Res. 1989;15:315–329.

    Article  CAS  PubMed  Google Scholar 

  32. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest. 2005;115:209–218.

    CAS  PubMed  Google Scholar 

  33. Richard D, Kefi K, Barbe U, Bausero P, Visioli F. Polyunsaturated fatty acids as antioxidants. Pharmacol Res. 2008;57:451–455.

    Article  CAS  PubMed  Google Scholar 

  34. Schreuder TC, Verwer BJ, van Nieuwkerk CM, Mulder CJ. Nonalcoholic fatty liver disease: An overview of current insights in pathogenesis, diagnosis and treatment. World J Gastroenterol. 2008;14:2474–2486.

    Article  CAS  PubMed  Google Scholar 

  35. Begriche K, Igoudjil A, Pessayre D, Fromenty B. Mitochondrial dysfunction in NASH: Causes, consequences and possible means to prevent it. Mitochondrion. 2006;6:1–28.

    Article  CAS  PubMed  Google Scholar 

  36. Kovalszky I, Nagy P, Szende B, et al. Experimental and human liver fibrogenesis. Scand J Gastroenterol Suppl. 1998;228:51–55.

    CAS  PubMed  Google Scholar 

  37. Arias M, Sauer-Lehnen S, Treptau J, et al. Adenoviral expression of a transforming growth factor-β1 antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats. BMC Gastroenterol. 2003;3:29.

    Article  PubMed  Google Scholar 

  38. Nakamura T, Sakata R, Ueno T, Sata M, Ueno H. Inhibition of transforming growth factor β prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats. Hepatology. 2000;32:247–255.

    Article  CAS  PubMed  Google Scholar 

  39. Nakayama M, Fukuda N, Watanabe Y, et al. Low dose of eicosapentaenoic acid inhibits the exaggerated growth of vascular smooth muscle cells from spontaneously hypertensive rats through suppression of transforming growth factor-β. J Hypertens. 1999;17:1421–1430.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang M, Hagiwara S, Matsumoto M, et al. Effects of eicosapentaenoic acid on the early stage of type 2 diabetic nephropathy in KKAy/Ta mice: Involvement of anti-inflammation and antioxidative stress. Metabolism. 2006;55:1590–1598.

    Article  CAS  PubMed  Google Scholar 

  41. Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr Rev. 1999;20:649–688.

    Article  CAS  PubMed  Google Scholar 

  42. Chambrier C, Bastard JP, Rieusset J, et al. Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor γ. Obes Res. 2002;10:518–525.

    Article  CAS  PubMed  Google Scholar 

  43. Kawashima A, Harada T, Imada K, Yano T, Mizuguchi K. Eicosapentaenoic acid inhibits interleukin-6 production in interleukin-1β-stimulated C6 glioma cells through peroxisome proliferator-activated receptor-gamma. Prostaglandins Leukot Essent Fatty Acids. 2008;1–2:59–65.

    Article  Google Scholar 

  44. Nan YM, Fu N, Wu WJ, et al. Rosiglitazone prevents nutritional fibrosis and steatohepatitis in mice. Scand J Gastroenterol. 2009;44:358–365.

    Article  CAS  PubMed  Google Scholar 

  45. Galli A, Crabb DW, Ceni E, et al. Antidiabetic thiazolidinediones inhibit collagen synthesis and hepatic stellate cell activation in vivo and in vitro. Gastroenterology. 2002;122:1924–1940.

    Article  CAS  PubMed  Google Scholar 

  46. Hui R, Robillard M, Falardeau P. Inhibition of vasopressin-induced formation of diradylglycerols in vascular smooth muscle cells by incorporation of eicosapentaenoic acid in membrane phospholipids. J Hypertens. 1992;10:1145–1153.

    Article  CAS  PubMed  Google Scholar 

  47. Yu W, Murray NR, Weems C, et al. Role of cyclooxygenase 2 in protein kinase C βII-mediated colon carcinogenesis. J Biol Chem. 2003;278:11167–11174.

    Article  CAS  PubMed  Google Scholar 

  48. Tanaka N, Sano K, Horiuchi A, Tanaka E, Kiyosawa K, Aoyama T. Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis. J Clin Gastroenterol. 2008;42:413–418.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Chiaki Masaki, Ms. Satomi Handa, Ms. Reiko Ono, and Mr. Yojiro Kamagata for their skillful assistance.

Conflicts of Interest Statement

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Harada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kajikawa, S., Harada, T., Kawashima, A. et al. Highly Purified Eicosapentaenoic Acid Ethyl Ester Prevents Development of Steatosis and Hepatic Fibrosis in Rats. Dig Dis Sci 55, 631–641 (2010). https://doi.org/10.1007/s10620-009-1020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-1020-0

Keywords

Navigation