Skip to main content

Advertisement

Log in

ICAM-1 Signal Transduction in Cells Stimulated with Neutrophil Elastase

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Neutrophil elastase, which enhances intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells, plays an important role in ischemia/reperfusion injury. Here, we investigated signal transduction of ICAM-1 expression in endothelial cells stimulated by neutrophil elastase. Pretreatment of animals with the neutrophil elastase inhibitor, ONO-5046.Na significantly decreased the number of neutrophils or Mac-1+ (CD11b/CD18) cells in ischemic liver lobes after reperfusion. ICAM-1 expression in the rat endothelial cell line (WK-5) was significantly upregulated after stimulation with neutrophil elastase, but this reaction was inhibited by the neutrophil elastase inhibitor ONO-5046.Na. ICAM-1 mRNA expression, which is induced by neutrophil elastase in a dose-dependent manner, was repressed by the α1-protease inhibitor. ICAM-1 expression, stimulated by neutrophil elastase, was partially reduced by a diacylglycerol kinase inhibitor and protein kinase C inhibitor, but was completely inhibited by a phospholipase C inhibitor, cytosolic Ca2+ chelator, calmodulin antagonist, and nuclear transcription factor kappa B inhibitor. Binding of 125I-neutrophil elastase to WK-5 cells was competitively inhibited by the addition of unlabeled neutrophil elastase. The neutrophil elastase inhibitor significantly reduces ICAM-1 expression and Mac-1+ cell accumulation in ischemic liver lobes after reperfusion. Neutrophil elastase stimulates ICAM-1 expression in endothelial cells by intracellular signal transduction via activation of diacylglycerol kinase, protein kinase C, phospholipase C, Ca2+-calmodulin, and nuclear transcription factor kappa B.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jaeschke H, Farhood A, Smith CW (1990) Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J 4:3355–3359

    PubMed  CAS  Google Scholar 

  2. Poggetti RS, Moore FA, Moore EE, Bensard DD, Anderson BO, Banerjee A (1992) Liver injury is a reversible neutrophil-mediated event following gut ischemia. Arch Surg 127:175–179

    PubMed  CAS  Google Scholar 

  3. Jaeschke H, Farhood A, Bautista AP, Spolarics Z, Spitzer JJ, Smith CW (1993) Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology 17:915–923

    Article  PubMed  CAS  Google Scholar 

  4. Diamond MS, Straunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11b/CD18). J Cell Biol 111:3129–3139

    Article  PubMed  CAS  Google Scholar 

  5. Farhood A, McGuire GM, Manning AM, Miyasaka M, Smith CW, Jaeschke H (1995) Intercellular adhesion molecule 1 (ICAM-1) expression and its role in neutrophil-induced ischemia-reperfusion injury in rat liver. J Leukoc Biol 57:368–374

    PubMed  CAS  Google Scholar 

  6. Sibille Y, Reynolds HY (1990) Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141:471–501

    PubMed  CAS  Google Scholar 

  7. Weiland JE, Davis WB, Holter JF, Mohammed JR, Dorinsky PM, Gadek JE (1986) Lung neutrophils in the adult respiratory distress syndrome. Clinical and pathophysiologic significance. Am Rev Respir Dis 133:218–225

    PubMed  CAS  Google Scholar 

  8. McGowan SE, Murray JJ (1987) Direct effects of neutrophil oxidants on elastase-induced extracellular matrix proteolysis. Am Rev Respir Dis 135:1286–1293

    PubMed  CAS  Google Scholar 

  9. McDonald JA, Kelley DG (1980) Degradation of fibronectin by human leukocyte elastase. Release of biologically active fragments. J Biol Chem 255:8848–8858

    PubMed  CAS  Google Scholar 

  10. Mainardi CL, Hasty DL, Seyer JM, Kang AH (1980) Specific cleavage of human type III collagen by human polymorphonuclear leukocyte elastase. J Biol Chem 255:12006–12010

    PubMed  CAS  Google Scholar 

  11. Kawabata K, Suzuki M, Sugitani M, Imaki K, Toda M, Miyamoto T (1991) ONO-5046, a novel inhibitor of human neutrophil elastase. Biochem Biophys Res Commun 177:814–820

    Article  PubMed  CAS  Google Scholar 

  12. Matsumura F, Yamaguchi Y, Ogawa M (1997) Adhesion molecule expression in vascular endothelial cells incubated with cancer cell line supernatant are inhibited by neutrophil elastase inhibitor (ONO-5046.Na). Res Commun Mol Pathol Pharmacol 98:109–112

    PubMed  CAS  Google Scholar 

  13. National Institutes of Health (1985) Guide for the care and use of laboratory animals. Public Health Service, NIH Publication No. 86-23, Bethesda, Maryland, USA

  14. Yamaguchi Y, Kikuchi N, Miyanari N, Ichiguchi O, Goto M, Mori K, Ogawa M (1996) Technique for orthotopic reduced-size hepatic transplantation combined with ex vivo liver cut down in the rat. Dig Dis Sci 41:1713–1721

    Article  PubMed  CAS  Google Scholar 

  15. Whiteland JL, Nichoiis SM, Shimeld C, Easty DL, Williams NA, Hill TJ (1995) Immunohistochemical detection of T cell subsets and other leukocytes in paraffin-embedded rat and mouse tissues with monoclonal antibodies. J Histochem Cytochem 43:313–320

    PubMed  CAS  Google Scholar 

  16. Matsuno K, Ezaki T, Kotani M (1989) Splenic outer periarterial lymphoid sheath (PALS): an immunoproliferative microenvironment constituted by antigen-laden marginal metallophils and ED2-positive macrophages in the rat. Cell Tissue Res 257:459–470

    Article  PubMed  CAS  Google Scholar 

  17. Yam LT, Li CY, Crosby WH (1971) Cytochemical identification of monocytes and granulocytes. Am J Clin Pathol 55:283– 290

    PubMed  CAS  Google Scholar 

  18. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  19. Kita Y, Takashi T, Iigo Y, Tamatani T, Miyasaka M, Horiuchi T (1992) Sequence and expression of rat ICAM-1. Biochim Biophys Acta 1131:108–110

    PubMed  CAS  Google Scholar 

  20. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification of morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    PubMed  CAS  Google Scholar 

  21. Kohno S, Mitsutake K, Maesaki S, Yasuoka A, Miyazaki T, Kaku M, Koga H, Hara K (1993) An evaluation of serodiagnostic tests in patients with candidemia: beta-glucan, mannan, candida antigen by Cand-Tec and D-arabinitol. Microbiol Immunol 37:207–212

    PubMed  CAS  Google Scholar 

  22. Von Schenck H, Larsson I, Thorell JI (1976) Improved radioiodination of glucagon with the lactoperoxidase method. Influence of pH on iodine substitution. Clin Chim Acta 69:225–232

    Article  PubMed  CAS  Google Scholar 

  23. Wellicome SM, Thornhill MH, Pitzalis C, Thomas DS, Lanchbury JS, Panayi GS, Haskard DO (1990) A monoclonal antibody that detects a novel antigen on endothelial cells that is induced by tumor necrosis factor, IL-1, or lipopolysaccharide. J Immunol 144:2558–2565

    PubMed  CAS  Google Scholar 

  24. Krunkosky TM, Fischer BM, Martin LD, Jones N, Akley NJ, Adler KB (2000) Effects of TNF-alpha on expression of ICAM-1 in human airway epithelial cells in vitro. Signaling pathways controlling surface and gene expression. Am J Respir Cell Mol Biol 22:685–692

    PubMed  CAS  Google Scholar 

  25. Chang YJ, Holtzman MJ, Chen CC (2002) Interferon-gamma-induced epithelial ICAM-1 expression and monocyte adhesion. Involvement of protein kinase C-dependent c-Src tyrosine kinase activation pathway. J Biol Chem 277:7118–71126

    Article  PubMed  CAS  Google Scholar 

  26. Luo B, Prescott SM, Topham MK (2003) Protein kinase C alpha phosphorylates and negatively regulates diacylglycerol kinase zeta. J Biol Chem 278:39542–39547

    Article  PubMed  CAS  Google Scholar 

  27. Kawaguchi H, Yasuda H (1988) Effect of elastase on phospholipase activity in aortic smooth muscle cells. Biochim Biophys Acta 958:450–459

    PubMed  CAS  Google Scholar 

  28. Yan JC, Wu ZG, Kong XT, Zong RQ, Zhan LZ (2003) Effect of CD40–CD40 ligand interaction on diacylglycerol-protein kinase C and inositol trisphosphate-Ca(2+) signal transduction pathway in human umbilical vein endothelial cells. Clin Chim Acta 337:133–140

    Article  PubMed  CAS  Google Scholar 

  29. Camina JP, Casabiell X, Casanueva FF (1999) Inositol 1,4,5-trisphosphate-independent Ca(2+) mobilization triggered by a lipid factor isolated from vitreous body. J Biol Chem 274:28134–28141

    Article  PubMed  CAS  Google Scholar 

  30. Igal RA, Caviglia JM, de Gomez Dumm IN, Coleman RA (2001) Diacylglycerol generated in CHO cell plasma membrane by phospholipase C is used for triacylglycerol synthesis. J Lipid Res 42:88–95

    PubMed  CAS  Google Scholar 

  31. Bagley KC, Abdelwahab SF, Tuskan RG, Lewis GK (2004) Calcium signaling through phospholipase C activates dendritic cells to mature and is necessary for the activation and maturation of dendritic cells induced by diverse agonists. Clin Diag Lab Immunol 11:77–82

    Article  CAS  Google Scholar 

  32. Noguchi K, Iwasaki K, Ishikawa I (1999) Prostaglandin F2 alpha upregulates intercellular adhesion molecule-1 expression in human gingival fibroblasts. J Periodontal Res 34:277–281

    Article  PubMed  CAS  Google Scholar 

  33. Roy J, Audette M, Tremblay MJ (2001) Intercellular adhesion molecule-1 (ICAM-1) gene expression in human T cells is regulated by phosphotyrosyl phosphatase activity. Involvement of NF-kappaB, Ets, and palindromic interferon-gamma-responsive element-binding sites. J Biol Chem 276:14553–14561

    Article  PubMed  CAS  Google Scholar 

  34. Hou J, Baichwal V, Cao Z (1994) Regulatory elements and transcription factors controlling basal and cytokine-induced expression of the gene encoding intercellular adhesion molecule 1. Proc Natl Acad Sci USA 91:11641–11645

    Article  PubMed  CAS  Google Scholar 

  35. Parry GC, Mackman N (1994) A set of inducible genes expressed by activated human monocytic and endothelial cells contain kappa B-like sites that specifically bind c-Rel-p65 heterodimers. J Biol Chem 269:20823–20825

    PubMed  CAS  Google Scholar 

  36. Campbell EJ, White RR, Senior RM, Rodriguez RJ, Kuhn C (1979) Receptor-mediated binding and internalization of leukocyte elastase by alveolar macrophages in vitro. J Clin Invest 64:824–833

    PubMed  CAS  Google Scholar 

  37. Campbell EJ (1982) Human leukocyte elastase, cathepsin G, and lactoferrin: family of neutrophil granule glycoproteins that bind to an alveolar macrophage receptor. Proc Natl Acad Sci USA 79:6941–6945

    Article  PubMed  CAS  Google Scholar 

  38. Sommerhoff CP, Nadel JA, Basbaum CB, Caughey GH (1990) Neutrophil elastase and cathepsin G stimulate secretion from cultured bovine airway gland serous cells. J Clin Invest 85:682–689

    Article  PubMed  CAS  Google Scholar 

  39. Dwyer TM, Farley JM (2000) Human neutrophil elastase releases two pools of mucinlike glycoconjugate from tracheal submucosal gland cells. Am J Physiol Lung Cell Mol Physiol 278:L675– L682

    PubMed  CAS  Google Scholar 

  40. Bartholomew JS, Lowther DA (1987) Receptor-mediated binding of leukocyte elastase by chondrocytes. Arthritis Rheum 30:431–438

    PubMed  CAS  Google Scholar 

  41. Balloy V, Sallenave JM, Crestani B, Dehoux M, Chignard M (2003) Neutrophil DNA contributes to the antielastase barrier during acute lung inflammation. Am J Respir Cell Mol Biol 28:746–753

    Article  PubMed  CAS  Google Scholar 

  42. Fischer B, Voynow J (2000) Neutrophil elastase induces MUC5AC messenger RNA expression by an oxidant-dependent mechanism. Chest 117:317S–320S

    Article  PubMed  CAS  Google Scholar 

  43. Preston GA., Zarella CS, Pendergraft WF III, Rudolph EH, Yang JJ, Sekura SB, Jennette JC, Falk RJ (2002) Novel effects of neutrophil-derived proteinase 3 and elastase on the vascular endothelium involve in vivo cleavage of NF-kappaB and proapoptotic changes in JNK, ERK, and p38 MAPK signaling pathways. J Am Soc Nephrol 13:2840–2849

    Article  PubMed  CAS  Google Scholar 

  44. DiCamillo SJ, Carreras I, Panchenko MV, Stone PJ, Nugent MA, Foster JA, Panchenko MP (2002) Elastase-released epidermal growth factor recruits epidermal growth factor receptor and extracellular signal-regulated kinases to down-regulate tropoelastin mRNA in lung fibroblasts. J Biol Chem 277:18938–18946

    Article  PubMed  CAS  Google Scholar 

  45. Si-Tahar M, Pidard D, Balloy V, Moniatte M, Kieffer N, Van Dorsselaer A, Chignard M (1997) Human neutrophil elastase proteolytically activates the platelet integrin alphaIIbbeta3 through cleavage of the carboxyl terminus of the alphaIIb subunit heavy chain. Involvement in the potentiation of platelet aggregation. J Biol Chem 11636–11647

  46. Devaney JM, Greene CM, Taggart CC, Carroll TP, O’Neill SJ, McElvaney NG (2003) Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. F.E.B.S. Lett 544:129–132

    Article  CAS  Google Scholar 

  47. Uehara A, Muramoto K, Takada H, Sugawara S (2003) Neutrophil serine proteinases activate human nonepithelial cells to produce inflammatory cytokines through protease-activated receptor 2. J Immunol 170:5690–6170

    PubMed  CAS  Google Scholar 

  48. Roche N, Stirling RG, Lim S, Oliver BG, Chung KF (2003) Regulation of protease-activated receptor-1 in mononuclear cells by neutrophil proteases. Respir Med 97:228–233

    Article  PubMed  CAS  Google Scholar 

  49. Kohri K, Ueki IF, Nadel JA (2002) Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation. Am J Physiol Lung Cell Mol Physiol 283:L531–L540

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohjiroh Ishihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishihara, K., Yamaguchi, Y., Uchino, S. et al. ICAM-1 Signal Transduction in Cells Stimulated with Neutrophil Elastase. Dig Dis Sci 51, 2102–2112 (2006). https://doi.org/10.1007/s10620-006-9178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9178-1

Keywords

Navigation