Skip to main content
Log in

Direct and indirect coculture of mouse hepatic progenitor cells with mouse embryonic fibroblasts for the generation of hepatocytes and cholangiocytes

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The widespread use of hepatocytes and cholangiocytes for regenerative medicine and tissue engineering is restricted by the limited number of hepatocytes and cholangiocytes; a simple and effective method for the expansion and differentiation of the hepatic progenitor cells (HPCs) is required. Recent studies demonstrated that mouse embryonic fibroblasts (MEFs) play an important role in supporting the proliferation of the mouse hepatic progenitor cells (mHPCs). However, the effect of direct and indirect coculture of MEFs with mHPCs on the differentiation of mHPCs is poorly studied. Herein, we show that mHPCs rapidly proliferate and form colonies in direct or indirect contact coculture with MEFs in the serum-free medium. Importantly, after direct contact coculture of the mHPCs with MEFs for 6 days, mHPCs expressed the hepatic marker albumin (ALB) and did not express the cholangiocyte marker CK19, indicating their differentiation into hepatocytes. In contrast, after indirect contact coculture of the mHPCs with MEFs for 6 days, mHPCs expressed the cholangiocyte marker CK19 and did not express the hepatic marker ALB, indicating their differentiation into cholangiocytes. These results indicate that direct and indirect contact cocultures of the mHPCs with MEFs are useful for rapidly producing hepatocytes and cholangiocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MEFs:

Mouse embryonic fibroblasts

mHPCs:

Mouse hepatic progenitor cells

HPCs:

Hepatic progenitor cells

FACS:

Fluorescence-activated cell sorting

DPBS:

Dubecco’s phosphate buffered saline

Dlk:

Delta-like 1 homologue

ALB:

Albumin

References

  • Alwahsh SM, Rashidi H, Hay DC (2018) Liver cell therapy: is this the end of the beginning? Cell Mol Life Sci 75:1307–1324

    Article  CAS  PubMed  Google Scholar 

  • Anzai K, Chikada H, Tsuruya K, Ida K, Kagawa T et al (2016) Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture. Sci Rep 6:28283

    Article  PubMed  PubMed Central  Google Scholar 

  • Asumda FZ, Hatzistergos KE, Dykxhoorn DM, Jakubski S, Edwards J et al (2018) Differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Differentiation 101:16–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhandari RN, Riccalton LA, Lewis AL, Fry JR, Hammond AH, Tendler SJB et al (2001) Liver tissue engineering: a role for co-culture systems in modifying hepatocyte function and viability. Tissue Eng 7:345–357

    Article  CAS  PubMed  Google Scholar 

  • Boulter L, Lu WY, Forbes SJ (2013) Differentiation of progenitors in the liver: a matter of local choice. J Clin Investig 123:1867–1873

    Article  CAS  PubMed  Google Scholar 

  • Dianat N, Dubois-Pot-Schneider H, Steichen C, Desterke C, Leclerc P et al (2014) Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 60:700–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordillo M, Evans T, Gouon-Evans V (2015) Orchestrating liver development. Development 142:2094–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoppo T, Fujii H, Hirose T, Yasuchika K, Azuma H et al (2004) Thy1-positive mesenchymal cells promote the maturation of CD49f-positive hepatic progenitor cells in the mouse fetal liver. Hepatology 39:1362–1370

    Article  PubMed  Google Scholar 

  • Hu C, Li L (2015) In vitro culture of isolated primary hepatocytes and stem cell-derived hepatocyte-like cells for liver regeneration. Protein Cell 6:562–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito H, Kamiya A, Ito K, Yanagida A, Okada K et al (2012) In vitro expansion and functional recovery of mature hepatocytes from mouse adult liver. Liver Int 32:592–601

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Yanagida A, Okada K, Yamazaki Y, Nakauchi H et al (2014) Mesenchymal progenitor cells in mouse foetal liver regulate differentiation and proliferation of hepatoblasts. Liver Int 34:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Jiang G, Wan X, Wang M, Zhou J, Pan J et al (2016) A reliable and economical method for gaining mouse embryonic fibroblasts capable of preparing feeder layers. Cytotechnology 68:1603–1614

    Article  CAS  PubMed  Google Scholar 

  • Kamiya A, Inagaki Y (2015) Stem and progenitor cell systems in liver development and regeneration. Hepatol Res 45:29–37

    Article  PubMed  Google Scholar 

  • Kamiya A, Ito K, Yanagida A, Chikada H, Iwama A et al (2015) MEK-erk activity regulates the proliferative activity of fetal hepatoblasts through accumulation of p16/19(cdkn2a). Stem Cells Dev 24:2525–2535

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Li H, Yan S, Wei J, Li X (2014) Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules 15:1044–1054

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Terada K, Watanabe G, Ueno Y, Aiba N et al (2002) Differentiation of liver epithelial (stem-like) cells into hepatocytes induced by coculture with hepatic stellate cells. Biochem Biophys Res Commun 293:1420–1425

    Article  CAS  PubMed  Google Scholar 

  • Naoki Tanimizu MN, Saito Hiroki, Tsujimura Tohru, Miyajima Atsushi (2003) Isolation of hepatoblasts based on the expression of Dlk/Pref-1. J Cell Sci 116:1775–1786

    Article  CAS  PubMed  Google Scholar 

  • Nicolas CT, Hickey RD, Chen HS, Mao SA, Lopera Higuita M et al (2017) Concise review: liver regenerative medicine—from hepatocyte transplantation to bioartificial livers and bioengineered grafts. Stem Cells 35:42–50

    Article  PubMed  Google Scholar 

  • Oertel M (2011) Fetal liver cell transplantation as a potential alternative to whole liver transplantation? J Gastroenterol 46:953–965

    Article  CAS  PubMed  Google Scholar 

  • Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S et al (2015) Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol 33:853–861

    Article  CAS  PubMed  Google Scholar 

  • Okada K, Kamiya A, Ito K, Yanagida A, Ito H et al (2012) Prospective isolation and characterization of bipotent progenitor cells in early mouse liver development. Stem Cells Dev 21:1124–1133

    Article  CAS  PubMed  Google Scholar 

  • Onitsuka I, Tanaka M, Miyajima A (2010) Characterization and functional analyses of hepatic mesothelial cells in mouse liver development. Gastroenterology 138:1525–1535

    Article  PubMed  Google Scholar 

  • Paschos PK, Brown WE, Eswaramoorthy R, Hu JC, Athanasiou KA (2015) Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med 9:488–503

    Article  CAS  PubMed  Google Scholar 

  • Si-Tayeb K, Lemaigre FP, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18:175–189

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Tanaka M, Watanabe N, Saito S, Nonaka H et al (2008) p75 neurotrophin receptor is a marker for precursors of stellate cells and portal fibroblasts in mouse fetal liver. Gastroenterology 135:e273

    Google Scholar 

  • Takayama KAN, Mimura N, Akahira R, Taniguchi Y, Ikeda M, Sakurai F, Ohara O, Morio T, Sekiguchi K, Mizuguchi H (2017) Generation of safe and therapeutically effective human induced pluripotent stem cell-derived hepatocyte-like cells for regenerative medicine. Hepatol Commun 1:1058–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuruya K, Chikada H, Ida K, Anzai K, Kagawa T et al (2015) A paracrine mechanism accelerating expansion of human induced pluripotent stem cell-derived hepatic progenitor-like cells. Stem Cells Dev 24:1691–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Lü F, Jin X, Dewei LI (2017) Isolation and amplification of hepatic progenitor cells from fetal mouse in vitro. Basic Clin Med 37:648–652

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Feng Y, Aimaiti Y, Jin X, Mao X et al (2018) TGFβ signaling controls intrahepatic bile duct development may through regulating the Jagged1-Notch-Sox9 signaling axis. J Cell Physiol 233:5780–5791

    Article  CAS  PubMed  Google Scholar 

  • Weissman ILAD, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the General Program of National Natural Science Foundation of China (Grant No. 81470898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewei Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Wang, W., Aimaiti, Y. et al. Direct and indirect coculture of mouse hepatic progenitor cells with mouse embryonic fibroblasts for the generation of hepatocytes and cholangiocytes. Cytotechnology 71, 267–275 (2019). https://doi.org/10.1007/s10616-018-0282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-018-0282-9

Keywords

Navigation