Skip to main content
Log in

Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The flavonoids are the largest group of phenolic compounds isolated from a wide range of higher plants. These compounds work as antimicrobials, anti-insect agents and protect plants from other types of biotic and abiotic stresses. Various researchers have suggested that flavonoids possessed antioxidant, antineoplastic and cytotoxic activities. The main objective of this study was to test dichloromethane fraction of resinous exudate of Heliotropium subulatum for their antioxidant, antineoplastic and cytotoxic activities, as well as to search new antioxidant and antineoplastic agents for pharmaceutical formulations. Five flavonoids were isolated from resinous exudate of this plant species and screened for their in vitro and in vivo antioxidant models (DPPH radical scavenging, reducing power, superoxide anion scavenging, metal chelating scavenging systems, catalase and lipid peroxidation), antineoplastic (Sarcoma 180), and cytotoxic (Chinese hamster V79 cells) activities. Tricetin demonstrated maximum antioxidant activity against both in vitro and in vivo experimental systems while galangin exhibited maximum inhibition (78.35%) at a dose of 10 µg/kg/day against Sarcoma 180. Similarly, it was found that galangin also showed highest activity (21.1 ± 0.15%) at a concentration of 70 µg/ml to Chinese hamster V79 cells. The observed results suggest that tricetin has a potential to scavenge free radicals in both in vitro and in vivo models while the galangin could be considered as antitumor and cytotoxic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N (2007) SAR and QSAR of antioxidant activity of flavonoids. Curr Med Chem 14:827–845

    Article  CAS  Google Scholar 

  • Anagnostopoulou MA, Kefalas P, Papageorgiou VP, Assimepoulou AN, Boskou D (2006) Radical scavenging activity of various extracts and fractions of sweet orange peel (Citrus sinensis). Food Chem 94:19–25

    Article  CAS  Google Scholar 

  • Aswal BS, Bhakuni DS, Goel AK, Kar K, Mehrotra BN (1984) Screening of Indian plants for biological activity. Part X. Indian J Exp Biol 22:312–332

    CAS  Google Scholar 

  • Backheet EY, Farag SF, Ahmed AS, Sayed HM (2003) Flavonoids and cyanogenic glycosides from the leaves and stem bark of Prunus persica (L.) Batsch (Meet Ghamr) peach local cultivar in Assiut region. Bull Pharm Sci Assiut Univ 26:55–66

    CAS  Google Scholar 

  • Burkill HM (1985) The useful plants of West Tropical Africa. Royal Botanic Gardens, Kew

    Google Scholar 

  • Campos MG, Webby RF, Markham KR (2002) The unique occurrence of the flavone aglycone tricetin in Myrtaceae pollen. Z Naturforsch 57c:944–946

  • Campos AM, Lissi E, Chavez M, Modak B (2012) Antioxidant activity in heterogeneous and homogeneous system of the resinous exudates from Heliotropium stenophylum and H. sinuatum and of 3-O-methylgalangin their main component. Bol Latinoam Caribe Plantas Med Arom 11:549–555

    CAS  Google Scholar 

  • Chahar MK, Sharma N, Joshi YC (2011) Flavonoids: a versatile source of anticancer drugs. Pharmacogn Res 5:1–12

    Article  CAS  Google Scholar 

  • Ching AYL, Wah TS, Sukari MA, Lian GEC, Rahmani M, Khalid K (2007) Characterization of flavonoid derivatives from Boesenbergia rotunda (L.). Malays J Anal Sci 11:154–159

    Google Scholar 

  • Cotelle N (2001) Role of flavonoids in oxidative stress. Curr Top Med Chem 1:569–590

    Article  CAS  Google Scholar 

  • Dinis TCP, Medeira VMC, Almeida MLM (1994) Action of phenolic derivates (acetoaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as a peroxyl radical scavengers. Archiv Biochem Biophys 315:161–169

    Article  CAS  Google Scholar 

  • Dorta DJ, Pigoso AA, Mingatto FE, Rodrigues T, Pestana CR, Uyemura SA (2008) Antioxidant activity of flavonoids in isolated mitochondria. Phytother Res 22:1213–1218

    Article  CAS  Google Scholar 

  • Ebadi MS (2006) Pharmacodynamic basis of herbal medicine. CRC Press, Boca Raton

    Book  Google Scholar 

  • Farhan H, Malli F, Rammal H, Hajazi A, Bassal A, Ajouz N, Badran B (2012) Phytochemical screening and antioxidant activity of Lebanese Eryngium creticum L. Asian Pac J Trop Med 2:S1217–S1220

    Article  Google Scholar 

  • Feng SS, Chien S (2003) Chemotherapeutic engineering: application and further development of chemical engineering principles for chemotherapy of cancer and other diseases. Chem Eng Sci 58:4087–4114

    Article  CAS  Google Scholar 

  • Ferraris A, Rolfo M, Mangerini R, Arena S, Kirkman H (1996) Predominant role of catalase in the disposal of hydrogen peroxide within human erythrocytes. Blood 87:1595–1599

    Google Scholar 

  • Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14–22

    Article  Google Scholar 

  • Itokawa H, Watanabe K, Mihashi S (1979) Screening test for antitumor activity of crude drugs. Shoyakugaku Zasshi 33:95–98

    Google Scholar 

  • Jain SC, Defilipps RA (1991) Medicinal plants of India. Reference Publishing Co., Michigan

    Google Scholar 

  • Jothy SL, Aziz A, Chen Y, Sasidharan S (2012) Antioxidant activity and hepatoprotective potential of Polyalthia longifolia and Cassia spectabilis leaves against paracetamol-induced liver injury. Evid Based Complement Alter Med 2012:10

    Article  Google Scholar 

  • JungSug G, JingYo O, MunJu C, SooKyung B, ImSook S, KwangHyeon L (2011) Galangin suppresses the proliferation of beta-catenin response transcription-positive cancer cells by promoting adenomatous polyposis coli/axin/glycogen synthase kinase-3 beta -independent beta-catenin degradation. Mol Pharmacol 79:1014–1022

    Article  Google Scholar 

  • Laskar RA, Ismail SK, Nayan Roy Begum NA (2010) Antioxidant activity of Indian propolis and its chemical constituents. Food Chem 122:233–237

    Article  CAS  Google Scholar 

  • Li F, Awale S, Tezuka Y, Esumi H, Kadota S (2010) Study on the constituents of Mexican propolis and their cytotoxic activity against PANC-1 human pancreatic cancer cells. J Nat Prod 73:623–627

    Article  CAS  Google Scholar 

  • Liu KX, Kato Y, Yamazaki M, Higuchi O, Nakamura T, Sugiyama Y (1993) Decrease in the hepatic clearance of hepatocyte growth factor in carbon tetrachlorideintoxicated rats. Hepatol 17:651–660

    Article  CAS  Google Scholar 

  • Majewska M, Skrzycki M, Podsiad M, Czeczot H (2011) Evaluation of antioxidant potential of flavonoids: an in vitro study. Acta Pol Pharm Drug Res 68:611–615

    CAS  Google Scholar 

  • Modak B, Galeno H, Torres R (2004) Antiviral activity on hantavirus and apoptosis of vero cells of natural and semi-synthetic compounds from Heliotropium filifolium resin. J Chil Chem Soc 49:143–145

    CAS  Google Scholar 

  • Modak B, Rojas M, Torres R (2009) Chemical analysis of the resinous exudate isolated from Heliotropium taltalense and evaluation of the antioxidant activity of the phenolics components and the resin in homogenous and heterogenous systems. Molecules 14:1980–1989

    Article  CAS  Google Scholar 

  • Modak B, Torres R, De Saint Pierre M, Saud K, Armijo A, Caviedes R, Caviedes P (2011a) In vitro antiproliferative activity of 3 H-spiro [1-benzofuran-2,1′-cyclohexane] derivatives. Bol Latinoam Carib Plant Med Arom 10:281–288

    CAS  Google Scholar 

  • Modak B, Torres R, Urzúa A (2011b) Seasonal variation of the flavonoids pinocembrin and 3-o-methylgalangin, in the surface component mixture (resinous exudates and waxy coating) of Heliotropium stenophyllum. J Chil Chem Soc 56:532–534

    Article  CAS  Google Scholar 

  • Modak B, Rivas A, Vallejos E, Sandino AM, Spencer E (2012) Antiviral activity in vitro and in vivo of natural flavonoids isolated from Heliotropium sinuatum against infections Salmon anemia virus. Bol Latinoam Caribe Planta Med Arom 11:377–384

    CAS  Google Scholar 

  • Mohanty C, Sahu SK (2010) In vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31:6597–6611

    Article  CAS  Google Scholar 

  • Moran JF, Klucas RV, Grayer RJ, Abian J, Becana M (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Rad Biol Med 22:861–870

    Article  CAS  Google Scholar 

  • Moreira MR, Kanashiro A, Kabeya LM, Polizello AC, Azzolini AE, Curti C (2007) Neutrophil effector functions triggered by Fc-gamma and/or complement receptors are dependent on B-ring hydroxylation pattern and physicochemical properties of flavonols. Life Sci 81:317–326

    Article  CAS  Google Scholar 

  • Murray TJ, Yang X, Sherr DH (2006) Growth of a human mammary tumor cell line is blocked by galangin, a naturally occurring bioflavonoid, and is accompanied by down-regulation of cyclins D3, E, and A. Breast Cancer Res 8:R17

    Article  Google Scholar 

  • Nasir E, Ali SI (2005) Flora of Pakistan. University of Karachi, Karachi

    Google Scholar 

  • Niehius WG, Samuelson B (1968) Formation of malondialdehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130

    Article  Google Scholar 

  • Olennikov DN, Kashchenko NI, Chirikova NK (2014) A novel HPLC-assisted method for investigation of the Fe2+-chelating activity of flavonoids and plant extracts. Molecules 19:18296–18316

    Article  CAS  Google Scholar 

  • Pari L, Latha M (2004) Protective role of Scoparia dulcis plant extract on brain antioxidant status and lipidperoxidation in STZ diabetic male Wistar rats. BMC Complement Altern Med 4:16

    Article  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  Google Scholar 

  • Pullaiah T, Naidu KC (2003) Antidiabetic plants in India and herbal based antidiabetic research. Regency Publications, New Delhi, p 196

    Google Scholar 

  • Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Rad Biol Med 20:933–956

    Article  CAS  Google Scholar 

  • Robak J, Gryglewski RJ (1998) Flavonoids are scavengers of superoxide anions. Biochem Pharmacol 37:837–841

    Article  Google Scholar 

  • Ruffo CK, Birnie A, Tengnas B (2002) Edible wild plants of Tanzania. Regional Land Management Unit, Nairobi

    Google Scholar 

  • Scalbert A, Johnson IT, Saltmarsh M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutri 81:215s–217s

    CAS  Google Scholar 

  • Schmelzer GH, Gurib-Fakim A (2008) Plant resources of Tropical Africa 11(1). Medicinal plants 1. PROTA foundation, Wageningen, Netherlands

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:Article ID 217037. doi:10.1155/2012/217037

  • Shimada K, Fujikawa K, Yahata K, Nakamura T (1992) Antioxidative properties of xanthan on oxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948

    Article  CAS  Google Scholar 

  • Singh B, Sharma RA (2015) Anti-Inflammatory and antimicrobial properties of flavonoids from Heliotropium subulatum exudates. Inflamm Allergy Drug Targets 14:125–132

    Article  CAS  Google Scholar 

  • Tiwari AK (2001) Imbalance in antioxidant defense and human diseases: multiple approach of natural antioxidants therapy. Curr Sci 81:1179–1187

    CAS  Google Scholar 

  • Tolomeo M, Grimaudo S, Di Cristina A, Pipitone RM, Dusonchet L, Meli M (2008) Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells. Cancer Lett 265:289–297

    Article  CAS  Google Scholar 

  • Torres R, Villarroel L, Urzúa A, Dell-Monache F, Dell-Monache G, Gaes-Baitz E (1994) Filifolinol, rearranged geranyl aromatic derivative from the resinous exudates of Heliotropium filifolium. Phytochemistry 36:249–256

    Article  CAS  Google Scholar 

  • Torres R, Modak B, Urzúa A, Villarroel L, Delle-Monache F, Sánchez-Ferrando F (1996) Flavonoids del exudado resinoso de Heliotropium sinuatum. Bol Soc Chil Quím 41:195–197

    CAS  Google Scholar 

  • Urzúa A, Modak B, Torres R (2001) Identification of a new aromatic geranyl derivative in the resinous exudates of Heliotropium filifolium (Boraginaceae). Bol Soc Chil Quim 46:175–178

    Google Scholar 

  • Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GL, Nishioka I (1998) Study on the inhibitory effect of tannins, flavonoids against the 1,1-diphenyl-2-pycylhydrazyl radical. Biochem Pharmacol 56:213–222

    Article  CAS  Google Scholar 

  • Zha X-Q, Wang J-H, Yang X-F, Liang H, Zhao LL, Bao SH, Luo J-P, Xu Y-Y, Zhou B-B (2009) Antioxidant properties of polysaccharide fractions with different molecular mass extracted with hot water from rice bran. Carbohydr Polym 78:570–575

    Article  CAS  Google Scholar 

  • Zhao H, Fan W, Dong J, Lu J, Chen J, Shan L (2008) Evaluation of antioxidant activities and total phenolic contents of typical malting barley varieties. Food Chem 107:296–300

    Article  CAS  Google Scholar 

Download references

Authors’ contribution

BS and PMS designed and perform the experimental work and analyzed the data. RAS reviewed the manuscript and facilitated the help in equipments and chemicals. We are grateful to Professor P. Singh, Department of Chemistry, University of Rajasthan, Jaipur for providing the standard compounds and Professor Dr. H. Itokawa, College of Pharmacy, Tokyo, for his kind help in the screening process of antineoplastic and cytotoxic activities as well as Dr. H. Singh, Pacific University for helping in study of in vivo antioxidant activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Singh.

Ethics declarations

Conflict of interest

The authors hereby declare that no financial support associated to this research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Sahu, P.M. & Sharma, R.A. Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II. Cytotechnology 69, 103–115 (2017). https://doi.org/10.1007/s10616-016-0041-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-0041-8

Keywords

Navigation