Skip to main content
Log in

The potential of metabolomic analysis techniques for the characterisation of α1-adrenergic receptors in cultured N1E-115 mouse neuroblastoma cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Several studies of neuropathic pain have linked abnormal adrenergic signalling to the development and maintenance of pain, although the mechanisms underlying this are not yet fully understood. Metabolomic analysis is a technique that can be used to give a snapshot of biochemical status, and can aid in the identification of the mechanisms behind pathological changes identified in cells, tissues and biological fluids. This study aimed to use gas chromatography-mass spectrometry-based metabolomic profiling in combination with reverse transcriptase-polymerase chain reaction and immunocytochemistry to identify functional α1-adrenergic receptors on cultured N1E-115 mouse neuroblastoma cells. The study was able to confirm the presence of mRNA for the α1D subtype, as well as protein expression of the α1-adrenergic receptor. Furthermore, metabolomic data revealed changes to the metabolite profile of cells when exposed to adrenergic pharmacological intervention. Agonist treatment with phenylephrine hydrochloride (10 µM) resulted in altered levels of several metabolites including myo-inositol, glucose, fructose, alanine, leucine, phenylalanine, valine, and n-acetylglutamic acid. Many of the changes observed in N1E-115 cells by agonist treatment were modulated by additional antagonist treatment (prazosin hydrochloride, 100 µM). A number of these changes reflected what is known about the biochemistry of α1-adrenergic receptor activation. This preliminary study therefore demonstrates the potential of metabolomic profiling to confirm the presence of functional receptors on cultured cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbiss H, Maker GL, Gummer J, Sharman MJ, Phillips JK, Boyce M, Trengove RD (2012) Development of a non-targeted metabolomics method to investigate urine in a rat model of polycystic kidney disease. Nephrology 17:104–110. doi:10.1111/j.1440-1797.2011.01532.x

    Article  CAS  Google Scholar 

  • Ali Z, Raja SN, Wesselmann U, Fuchs PN, Meyer RA, Campbell JN (2000) Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. Pain 88:161–168

    Article  CAS  Google Scholar 

  • Alonso-Llamazares A, Zamanillo D, Casanova E, Ovalle S, Calvo P, Chinchetru MA (1995) Molecular cloning of alpha 1d-adrenergic receptor and tissue distribution of three alpha 1-adrenergic receptor subtypes in mouse. J Neurochem 65:2387–2392

    Article  CAS  Google Scholar 

  • Alpini G, Franchitto A, Demorrow S, Onori P, Gaudio E, Wise C, Francis H, Venter J, Kopriva S, Mancinelli R, Carpino G, Stagnitti F, Ueno Y, Han Y, Meng F, Glaser S (2011) Activation of alpha(1) -adrenergic receptors stimulate the growth of small mouse cholangiocytes via calcium-dependent activation of nuclear factor of activated T cells 2 and specificity protein 1. Hepatology 53:628–639. doi:10.1002/hep.24041

    Article  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol Chemother 14:48–58

    Article  CAS  Google Scholar 

  • Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360

    Article  CAS  Google Scholar 

  • Chalothorn D, McCune DF, Edelmann SE, Garcia-Cazarin ML, Tsujimoto G, Piascik MT (2002) Differences in the cellular localization and agonist-mediated internalization properties of the alpha(1)-adrenoceptor subtypes. Mol Pharmacol 61:1008–1016

    Article  CAS  Google Scholar 

  • Chang DJ, Chang TK, Yamanishi SS, Salazar FH, Kosaka AH, Khare R, Bhakta S, Jasper JR, Shieh IS, Lesnick JD, Ford AP, Daniels DV, Eglen RM, Clarke DE, Bach C, Chan HW (1998) Molecular cloning, genomic characterization and expression of novel human alpha1A-adrenoceptor isoforms. FEBS Lett 422:279–283

    Article  CAS  Google Scholar 

  • Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:623–634

    Article  CAS  Google Scholar 

  • Choi B, Rowbotham MC (1997) Effect of adrenergic receptor activation on post-herpetic neuralgia pain and sensory disturbances. Pain 69:55–63

    Article  CAS  Google Scholar 

  • Cikos S, Rehak P, Czikkova S, Vesela J, Koppel J (2007) Expression of adrenergic receptors in mouse preimplantation embryos and ovulated oocytes. Reproduction 133:1139–1147. doi:10.1530/REP-07-0006

    Article  CAS  Google Scholar 

  • Cole SW, Sood AK (2012) Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res 18:1201–1206. doi:10.1158/1078-0432.CCR-11-0641

    Article  CAS  Google Scholar 

  • Day HE, Campeau S, Watson SJ Jr, Akil H (1997) Distribution of alpha 1a-, alpha 1b- and alpha 1d-adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat 13:115–139

    Article  CAS  Google Scholar 

  • Drummond PD, Drummond ES, Dawson LF, Mitchell V, Finch PM, Vaughan CW, Phillips JK (2014) Upregulation of alpha1-adrenoceptors on cutaneous nerve fibres after partial sciatic nerve ligation and in complex regional pain syndrome type II. Pain 155:606–616. doi:10.1016/j.pain.2013.12.021

    Article  CAS  Google Scholar 

  • Dunbar SA (2000) Alpha2-adrenoceptor agonists in the management of chronic pain. Best Pract Res Clin Anaesthesiol 14:471–481. doi:10.1053/bean.2000.0099

    Article  CAS  Google Scholar 

  • Fahrig T (1993) Receptor subtype involved and mechanism of norepinephrine-induced stimulation of glutamate uptake into primary cultures of rat brain astrocytes. Glia 7:212–218. doi:10.1002/glia.440070304

    Article  CAS  Google Scholar 

  • Feldstein JB, Pacitti AJ, Sumners C, Raizada MK (1986) Alpha 1-adrenergic receptors in neuronal cultures from rat brain: increased expression in the spontaneously hypertensive rat. J Neurochem 47:1190–1198

    Article  CAS  Google Scholar 

  • García-Cazarín ML (2008) The α1D-adrenergic receptor is expressed intracellularly and coupled to increases in intracellular calcium and reactive oxygen species in human aortic smooth muscle cells. J Mol Signaling 3:6. doi:10.1186/1750-2187-3-6

    Article  Google Scholar 

  • García-Sáinz JA (2000) Alpha 1-adrenoceptors: function and phosphorylation. Eur J Pharmacol 389:1–12. doi:10.1016/S0014-2999(99)00896-1

    Article  Google Scholar 

  • Greene JG, Greenamyre JT (1996) Bioenergetics and glutamate excitotoxicity. Prog Neurobiol 48:613–634

    Article  CAS  Google Scholar 

  • Hallcher LM, Sherman WR (1980) The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J Biol Chem 255:10896–10901

    CAS  Google Scholar 

  • Hansson E, Ronnback L (1989) Regulation of glutamate and GABA transport by adrenoceptors in primary astroglial cell cultures. Life Sci 44:27–34

    Article  CAS  Google Scholar 

  • Hedo G, Lopez-Garcia JA (2001) Alpha-1A adrenoceptors modulate potentiation of spinal nociceptive pathways in the rat spinal cord in vitro. Neuropharmacology 41:862–869

    Article  CAS  Google Scholar 

  • Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca(2+)]i. Neurochem Int 57:411–420. doi:10.1016/j.neuint.2010.03.019

    Article  CAS  Google Scholar 

  • Hong Y, Abbott FV (1996) Contribution of peripheral alpha 1A-adrenoceptors to pain induced by formalin or by alpha-methyl-5-hydroxytryptamine plus noradrenaline. Eur J Pharmacol 301:41–48

    Article  CAS  Google Scholar 

  • Ikeda Y, Yamaji R, Irie K, Kioka N, Murakami A (2012) Glyceraldehyde-3-phosphate dehydrogenase regulates cyclooxygenase-2 expression by targeting mRNA stability. Arch Biochem Biophys 528:141–147. doi:10.1016/j.abb.2012.09.004

    Article  CAS  Google Scholar 

  • Itoh Y, Esaki T, Shimoji K, Cook M, Law MJ, Kaufman E, Sokoloff L (2003) Dichloroacetate effects on glucose and lactate oxidation by neurons and astroglia in vitro and on glucose utilization by brain in vivo. Proc Natl Acad Sci USA 100:4879–4884. doi:10.1073/pnas.0831078100

    Article  CAS  Google Scholar 

  • Jorum E, Orstavik K, Schmidt R, Namer B, Carr RW, Kvarstein G, Hilliges M, Handwerker H, Torebjork E, Schmelz M (2007) Catecholamine-induced excitation of nociceptors in sympathetically maintained pain. Pain 127:296–301. doi:10.1016/j.pain.2006.08.022

    Article  CAS  Google Scholar 

  • Kamibayashi T, Maze M (2000) Clinical uses of alpha2 -adrenergic agonists. Anesthesiology 93:1345–1349

    Article  CAS  Google Scholar 

  • Kenny BA, Chalmers DH, Philpott PC, Naylor AM (1995) Characterization of an alpha 1D-adrenoceptor mediating the contractile response of rat aorta to noradrenaline. Br J Pharmacol 115:981–986

    Article  CAS  Google Scholar 

  • Khan KM, Drescher MJ, Hatfield JS, Ramakrishnan NA, Drescher DG (2007) Immunohistochemical localization of adrenergic receptors in the rat organ of corti and spiral ganglion. J Neurosci Res 85:3000–3012. doi:10.1002/jnr.21404

    Article  CAS  Google Scholar 

  • Khattar SK, Bora RS, Priyadarsiny P, Gautam A, Gupta D, Tiwari A, Nanda K, Singh R, Chugh A, Bansal V, Mookhtiar K, Saini KS (2006) Molecular cloning, stable expression and cellular localization of human alpha1-adrenergic receptor subtypes: effect of charcoal/dextran treated serum on expression and localization of alpha1D -adrenergic receptor. Biotechnol Lett 28:1731–1739. doi:10.1007/s10529-006-9148-x

    Article  CAS  Google Scholar 

  • Kingery WS, Agashe GS, Guo TZ, Sawamura S, Davies MF, Clark JD, Kobilka BK, Maze M (2002) Isoflurane and nociception: spinal alpha2A adrenoceptors mediate antinociception while supraspinal alpha1 adrenoceptors mediate pronociception. Anesthesiology 96:367–374

    Article  CAS  Google Scholar 

  • Legendre P, Dupouy B, Vincent JD (1988) Excitatory effect of noradrenaline on pacemaker cells in spinal cord primary cultures. Neuroscience 24:647–658

    Article  CAS  Google Scholar 

  • Li W, Shi X, Wang L, Guo T, Wei T, Cheng K, Rice KC, Kingery WS, Clark JD (2013) Epidermal adrenergic signaling contributes to inflammation and pain sensitization in a rat model of complex regional pain syndrome. Pain 154:1224–1236. doi:10.1016/j.pain.2013.03.033

    Article  CAS  Google Scholar 

  • Liu P, Bai X, Wang H, Karaplis A, Goltzman D, Miao D (2009) Hypophosphatemia-mediated hypotension in transgenic mice overexpressing human FGF-23. Am J Physiol Heart Circ Physiol 297:H1514–H1520. doi:10.1152/ajpheart.00581.2009

    Article  CAS  Google Scholar 

  • Luttinger D, Ferrari R, Perrone MH, Haubrich DR (1985) Pharmacological analysis of alpha-2 adrenergic mechanisms in nociception and ataxia. J Pharmacol Exp Ther 232:883–889

    CAS  Google Scholar 

  • McCune DF, Edelmann SE, Olges JR, Post GR, Waldrop BA, Waugh DJ, Perez DM, Piascik MT (2000) Regulation of the cellular localization and signaling properties of the alpha(1B)- and alpha(1D)-adrenoceptors by agonists and inverse agonists. Mol Pharmacol 57:659–666

    CAS  Google Scholar 

  • Michaelis EK (1998) Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging. Prog Neurobiol 54:369–415

    Article  CAS  Google Scholar 

  • Michel AD, Loury DN, Whiting RL (1989) Identification of a single alpha 1-adrenoceptor corresponding to the alpha 1A-subtype in rat submaxillary gland. Br J Pharmacol 98:883–889

    Article  CAS  Google Scholar 

  • Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  CAS  Google Scholar 

  • Millan MJ, Bervoets K, Rivet JM, Widdowson P, Renouard A, Le Marouille-Girardon S, Gobert A (1994) Multiple alpha-2 adrenergic receptor subtypes. II. Evidence for a role of rat R alpha-2A adrenergic receptors in the control of nociception, motor behavior and hippocampal synthesis of noradrenaline. J Pharmacol Exp Ther 270:958–972

    CAS  Google Scholar 

  • Moon DE, Lee DH, Han HC, Xie J, Coggeshall RE, Chung JM (1999) Adrenergic sensitivity of the sensory receptors modulating mechanical allodynia in a rat neuropathic pain model. Pain 80:589–595

    Article  CAS  Google Scholar 

  • Naccarato WF (1974) Biosynthesis of myo-inositol in rat mammary gland. Isolation and properties of the enzymes. Arch Biochem Biophys 164:194–201. doi:10.1016/0003-9861(74)90022-8

    Article  CAS  Google Scholar 

  • Nakadate K, Imamura K, Watanabe Y (2006) Cellular and subcellular localization of alpha-1 adrenoceptors in the rat visual cortex. Neuroscience 141:1783–1792. doi:10.1016/j.neuroscience.2006.05.031

    Article  CAS  Google Scholar 

  • Nishiura T, Abe K (2007) Alpha1-adrenergic receptor stimulation induces the expression of receptor activator of nuclear factor kappaB ligand gene via protein kinase C and extracellular signal-regulated kinase pathways in MC3T3-E1 osteoblast-like cells. Arch Oral Biol 52:778–785. doi:10.1016/j.archoralbio.2007.01.005

    Article  CAS  Google Scholar 

  • Ohashi H, Nishikawa K, Ayukawa K, Hara Y, Nishimoto M, Kudo Y, Abe T, Aoki S, Wada K (2007) Alpha 1-adrenoceptor agonists protect against stress-induced death of neural progenitor cells. Eur J Pharmacol 573:20–28. doi:10.1016/j.ejphar.2007.06.060

    Article  CAS  Google Scholar 

  • Papay R, Gaivin R, Jha A, McCune DF, McGrath JC, Rodrigo MC, Simpson PC, Doze VA, Perez DM (2006) Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J Comp Neurol 497:209–222. doi:10.1002/cne.20992

    Article  CAS  Google Scholar 

  • Perry MJ, Lawson SN, Robertson J (1991) Neurofilament immunoreactivity in populations of rat primary afferent neurons: a quantitative study of phosphorylated and non-phosphorylated subunits. J Neurocytol 20:746–758

    Article  CAS  Google Scholar 

  • Piascik MT, Perez DM (2001) Alpha1-adrenergic receptors: new insights and directions. J Pharmacol Exp Ther 298:403–410

    CAS  Google Scholar 

  • Pieribone VA, Nicholas AP, Dagerlind A, Hokfelt T (1994) Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J Neurosci 14:4252–4268

    CAS  Google Scholar 

  • Raja SN, Treede RD, Davis KD, Campbell JN (1991) Systemic alpha-adrenergic blockade with phentolamine: a diagnostic test for sympathetically maintained pain. Anesthesiology 74:691–698

    Article  CAS  Google Scholar 

  • Schambra UB, Mackensen GB, Stafford-Smith M, Haines DE, Schwinn DA (2005) Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience 135:507–523. doi:10.1016/j.neuroscience.2005.06.021

    Article  CAS  Google Scholar 

  • Schwinn DA, Lomasney JW, Lorenz W, Szklut PJ, Fremeau RT Jr, Yang-Feng TL, Caron MG, Lefkowitz RJ, Cotecchia S (1990) Molecular cloning and expression of the cDNA for a novel alpha 1-adrenergic receptor subtype. J Biol Chem 265:8183–8189

    CAS  Google Scholar 

  • Sonnewald U, Westergaard N, Jones P, Taylor A, Bachelard HS, Schousboe A (1996) Metabolism of [U-13C5] glutamine in cultured astrocytes studied by NMR spectroscopy: first evidence of astrocytic pyruvate recycling. J Neurochem 67:2566–2572

    Article  CAS  Google Scholar 

  • Stone EA, Zhang Y, Rosengarten H, Yeretsian J, Quartermain D (1999) Brain alpha 1-adrenergic neurotransmission is necessary for behavioral activation to environmental change in mice. Neuroscience 94:1245–1252

    Article  CAS  Google Scholar 

  • Suzuki F, Miyamoto S, Takita M, Oshita M, Watanabe Y, Kakizuka A, Narumiya S, Taniguchi T, Muramatsu I (1997) Cloning, functional expression and tissue distribution of rabbit alpha 1d-adrenoceptor. Biochim Biophys Acta 1323:6–11

    Article  CAS  Google Scholar 

  • Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G (2002) The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 109:765–775. doi:10.1172/JCI14001

    Article  CAS  Google Scholar 

  • Thorlin T, Eriksson PS, Ronnback L, Hansson E (1998) Receptor-activated Ca2+ increases in vibrodissociated cortical astrocytes: a nonenzymatic method for acute isolation of astrocytes. J Neurosci Res 54:390–401

    Article  CAS  Google Scholar 

  • Torebjork E, Wahren L, Wallin G, Hallin R, Koltzenburg M (1995) Noradrenaline-evoked pain in neuralgia. Pain 63:11–20

    Article  CAS  Google Scholar 

  • Trojanowski JQ, Walkenstein N, Lee VM (1986) Expression of neurofilament subunits in neurons of the central and peripheral nervous system: an immunohistochemical study with monoclonal antibodies. J Neurosci 6:650–660

    CAS  Google Scholar 

  • Wakabayashi C, Kiyama Y, Kunugi H, Manabe T, Iwakura Y (2011) Age-dependent regulation of depression-like behaviors through modulation of adrenergic receptor alpha(1)A subtype expression revealed by the analysis of interleukin-1 receptor antagonist knockout mice. Neuroscience 192:475–484. doi:10.1016/j.neuroscience.2011.06.031

    Article  CAS  Google Scholar 

  • Wang SY, Song Y, Xu M, He QH, Han QD, Zhang YY (2007) Internalization and distribution of three alpha1-adrenoceptor subtypes in HEK293A cells before and after agonist stimulation. Acta Pharmacol Sin 28:359–366. doi:10.1111/j.1745-7254.2007.00509.x

    Article  CAS  Google Scholar 

  • Westergaard N, Drejer J, Schousboe A, Sonnewald U (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C] glutamate. Glia 17:160–168. doi:10.1002/(SICI)1098-1136(199606)17:2<160:AID-GLIA7>3.0.CO;2-6

    Article  CAS  Google Scholar 

  • Wu D, Katz A, Lee CH, Simon MI (1992) Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family. J Biol Chem 267:25798–25802

    CAS  Google Scholar 

  • Xiao L, Scofield MA, Jeffries WB (1998) Molecular cloning, expression and characterization of cDNA encoding a mouse alpha1a-adrenoceptor. Br J Pharmacol 124:213–221. doi:10.1038/sj.bjp.0701812

    Article  CAS  Google Scholar 

  • Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D (2000) NMR spectroscopic study on the metabolic fate of [3-(13)C] alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia 32:286–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Health and Medical Research Council and National Collaborative Research Infrastructure Strategy BioPlatforms Australia. Thanks to A/Prof. Robert Trengove for his expertise on metabolomic analysis and the use of laboratory equipment, and to Dr. Monika Tschochner for performing mycoplasma analysis. Also thanks to Dr. Eleanor Drummond for her support with the immunocytochemistry, Dr. Sarah Etherington for her input on the written material and Dr. Philip Stumbles for providing us with mouse brain tissue.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garth L. Maker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10616_2015_9915_MOESM1_ESM.tif

Supplementary material Fig. 1 Reverse transcriptase PCR image showing presence or absence of mycoplasma contamination in several cell lines. The image show absence of mycoplasma contamination in N1E-115 cells, by lack of a 300 bp PCR product in this lane (NIE). (TIFF 3863 kb)

10616_2015_9915_MOESM2_ESM.tif

Supplementary material Fig. 2 Reverse transcriptase PCR image acquired from 8 to 12 weeks old female C57BL/6 mice brains, stored in RNAlater. M, molecular lane marker (100 bp); 1, mouse brain α1A-AR (333 bp); 2, mouse brain α1B-AR (139 bp); 3, mouse brain α1D-AR (281 bp); 4, mouse brain GAPDH (167 bp). Abbrevations: α1-AR, α1-adrenergic receptor (TIFF 344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenner, M.I., Maker, G.L., Dawson, L.F. et al. The potential of metabolomic analysis techniques for the characterisation of α1-adrenergic receptors in cultured N1E-115 mouse neuroblastoma cells. Cytotechnology 68, 1561–1575 (2016). https://doi.org/10.1007/s10616-015-9915-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9915-4

Keywords

Navigation