Skip to main content

Advertisement

Log in

Evolutionary Climate-Change Modelling: A Multi-Agent Climate-Economic Model

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In climate-economic modelling, agent-based models are still an exception. Although numerous authors have discussed the usefulness of the approach, only a few models exist. The paper proposes an update to a multi-agent climate-economic model, namely the “battle of perspectives” (Janssen, 1996; Janssen and de Vries 1998). The approach of the paper is twofold. First, the reimplementation of the model follows the “model to model” concept. Supporters of the approach argue that replication is a useful way to check a model’s accuracy and robustness. Second, updating a model with current data and new scientific evidence is a robustness check in itself. The long-term validity and usefulness of a model depends on the variability of the data on which it is based, as well as on the model’s sensitivity to data changes. By offering this update, the paper contributes to the development of agent-based models in climate-economics. Acknowledging evolutionary processes in climate-policy represents a useful complement to intertemporal cost-benefit analyses, the latter of which derive optimal protection paths but are not able to explain why people do not follow them. Since the replication and update succeeded, the paper recommends using the model as a basis for further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source Janssen and de Vries (1998, 55)

Fig. 2
Fig. 3

Source Janssen and de Vries (1998, 56)

Fig. 4
Fig. 5

Source Janssen and de Vries (1998, 59)

Fig. 6
Fig. 7

Source Janssen and de Vries (1998, 61)

Fig. 8
Fig. 9

Source Janssen and de Vries (1998, 60)

Fig. 10

Similar content being viewed by others

Notes

  1. “Fatalists”, constituting the fourth type, are usually exempted from analysis because they do not engage actively in a specific behaviour (believing it to be useless) and are thus excluded from or uninterested in political processes (Martens and Rotmans 1999).

  2. Parameter and starting value specifications will be given below in Table 1.

  3. The corresponding figures can be verified in Table 2. It is placed in the next section, because it relies partly on the updated data explained in this latter part of the paper.

  4. Arifovic (1991, 1994), Andreoni and Miller (1995), Birchenhall (1995), Dawid (1999) and Geisendorf (2009, 2011).

  5. For a thorough description of the modelling details of genetic algorithms, other sources should be consulted (e.g. Goldberg 1989; Mitchell 1997; Geisendorf 2011), but please note that the algorithm used herein works with full imitation, not with a recombination of strategies.

  6. In the original model, Janssen (1996) mentions having placed 50 agents in the learning model. However, when illustrating the shifts in their proportions, 10% of the agents are initialised as belonging to the two minority groups (Janssen 1996, 224–226). As it is not possible to include 2.5 agents per perspective, the present paper woks with 60 agents, including three agents for each minority group. Note, however, that the total number of agents is not decisive for the results.

References

  • Adger, W. N., Barnett, J., Brown, K., Marshall, N., & O’Brien, K. (2013). Cultural dimensions of climate change impacts and adaptation. Nature Climate Change, 3, 112–117.

    Article  Google Scholar 

  • An, L. (2012). Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecological Modelling, 229, 25–36.

    Article  Google Scholar 

  • Anda, J., Golub, A., & Strukova, E. (2009). Economics of climate change under uncertainty: Benefits of flexibility. Energy Policy, 37(4), 1345–1355.

    Article  Google Scholar 

  • Andreoni, J., & Miller, J. (1995). Auctions with artificial adaptive agents. Games and Economic Behavior, 10, 39–64.

    Article  Google Scholar 

  • Arifovic, J. (1991). Learning by genetic algorithms in economic environments. Dissertation, University of Chicago.

  • Arifovic, J. (1994). Genetic algorithm learning and the cobweb model. Journal of Economic Dynamics and Control, 18, 3–28.

    Article  Google Scholar 

  • Arifovic, J. (1996). The behavior of the exchange rate in the genetic algorithm and experimental economies. Journal of Political Economy, 104, 510–541.

    Article  Google Scholar 

  • Arifovic, J., & Ledyard, J. (2002). Computer testbeds and Mechanism Design. In: Computing in Economics and Finance 2002 262, Society for Computational Economics.

  • Aurbacher, J., Parker, P. S., Calberto Sánchez, G. A., Steinbach, J., Reinmuth, E., Ingwersen, J., et al. (2013). Influence of climate change on short term management of field crops–A modelling approach. Agricultural Systems, 119, 44–57.

    Article  Google Scholar 

  • Balbi, S., & Giupponi, C. (2010). Agent-based modelling of socio-ecosystems: A methodology for the analysis of climate change adaptation and sustainability. International Journal of Agent Technologies and Systems, 2(4), 17–38.

    Article  Google Scholar 

  • Barthel, R., Janisch, S., Schwarz, N., Trifkovic, A., Nickel, D., Schulz, C., et al. (2008). An integrated modelling framework for simulating regional-scale actor responses to global change in the water domain. Environmental Modelling and Software, 23, 1095–1121.

    Article  Google Scholar 

  • Beckenbach, F., & Briegel, R. (2009). Multi-agent modelling of economic innovation dynamics and its implication for analyzing emissions impact. Working Paper, University of Kassel.

  • Berman, M., Nicolson, C., Kofinas, G., Tetlichi, J., & Martin, S. (2004). Adaptation and sustainability in a small arctic community: Results of an agent-based simulation model. Arctic, 57(4), 401–414.

    Article  Google Scholar 

  • Bharwani, S., Bithell, M., Downing, T. E., New, M., Washington, R., & Ziervogel, G. (2005). Multi-agent modelling of climate outlooks and food security on a community garden scheme in Limpopo, South Africa. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1463), 2183.

    Article  Google Scholar 

  • Birchenhall, C. (1995). Modular technical change and genetic algorithms. Computional Economics, 8, 233–253.

    Article  Google Scholar 

  • Boulanger, P. M. (2010). Three strategies for sustainable consumption. Sapiens, 3, 1–10.

    Google Scholar 

  • Casari, M. (2004). Can genetic algorithms explain experimental anomalies. Computational Economics, 24, 257–275.

    Article  Google Scholar 

  • Dasgupta, P. (2007). Nature and the economy. Journal of Applied Ecology, 44, 457–487.

    Article  Google Scholar 

  • Dawid, H. (1999). Adaptive learning by genetic algorithms: Analytical results and applications to economic models, 2nd revised and (extended ed.). Berlin: Springer.

    Book  Google Scholar 

  • Dean, J. S., Gumerman, G. J., Epstein, J. M., Axtell, R. L., Swedlund, A. C., Parker, M. T., et al. (1999). Understanding Anasazi culture change through agent-based modeling. In T. A. Kohler & G. J. Gumerman (Eds.), Dynamics in human and primate societies: Agent-based modeling of social and spatial processes (pp. 179–205). Oxford: University Press.

    Google Scholar 

  • De Bruin, K. C., Dellink, R. B., & Tol, R. S. J. (2009). AD-DICE: An implementation of adaptation in the DICE model. Climatic Change, 95(1), 63–81.

    Article  Google Scholar 

  • Douglas, M., & Wildawski, A. (1982). Risk and culture: An essay on the selection of technological and environmental dangers. Berkeley: University of California Press.

    Google Scholar 

  • Duffy, P. (2000). Learning to speculate: Experiments with artificial and real agents. Journal of Economy and Dynamic Control, 25, 295–319.

    Article  Google Scholar 

  • Edmonds, B., & Hales, D. (2003). Replication, replication and replication: Some hard lessons from model alignment. Journal of Artificial Societies and Social Simulation, 6(4). http://jasss.soc.surrey.ac.uk/6/4/11.html.

  • Entwisle, B., Malanson, G., Rindfuss, R. R., & Walsh, S. J. (2008). An agent-based model of household dynamics and land use change. Journal of Land Use Science, 3(1), 73–93.

    Article  Google Scholar 

  • Etkin, D., & Ho, E. (2007). Climate change: Perceptions and discourses of risk. Journal of Risk Research, 10(5), 623–641.

    Article  Google Scholar 

  • Filatova, T. (2009). Land markets from the bottom up. Micro-macro links in economics and implications for coastal risk management. PhD Thesis. University of Twente.

  • Finus, M., & Pintassilgo, P. (2009). The role of uncertainty and learning for the success of international climate agreements. Stirling Economics discussion paper no. 2009-16.

  • Geisendorf, S. (2009). The influence of innovation and imitation on economic performance. Economic Issues, 14, 65–94.

    Google Scholar 

  • Geisendorf, S. (2011). Internal selection and market selection in economic genetic algorithms. Journal of Evolutionary Economics, 21(5), 817–841.

    Article  Google Scholar 

  • Gerst, M. D., Wang, P., Roventini, A., Fagiolo, G., Dosi, G., Howarth, R. B., et al. (2013). Agent-based modelling of climate policy: An introduction to the ENGAGE multi-level model framework. Environmental Modelling & Software, 44, 62–75.

    Article  Google Scholar 

  • Giupponi, C., Borsuk, M. E., de Vries, B. J. M., & Hasselmann, K. (2013). Innovative approaches to integrated global change modelling. Environmental Modelling and Software, 44, 1–9.

    Article  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

    Google Scholar 

  • Gowdy, J. M. (2008). Behavioral economics and climate change policy. Journal of Economic Behavior & Organization, 68, 632–644.

    Article  Google Scholar 

  • Gsottbauer, E., & van den Bergh, J. C. J. M. (2013). Bounded rationality and social interaction in negotiating a climate agreement. International Environmental Agreements: Politics, Law and Economics, 13(3), 225–249.

    Article  Google Scholar 

  • Haruvy, E., Roth, A. E., & Ünver, M. U. (2006). The dynamics of law clerk matching: An experimental and computational investigation of proposals for reform of the market. Journal of Economic Dynamics and Control, 30, 457–486.

    Article  Google Scholar 

  • Holland, J. H., & Miller, J. H. (1991). Artificial adaptive agents in economic theory. The American Economic Review, 81, 365–370.

    Google Scholar 

  • Hope, C. W. (2009). How deep should the deep cuts be? Optimal \(\text{ CO }_{2}\) emissions over time under uncertainty. Climate Policy, 9, 3–8.

    Article  Google Scholar 

  • IPCC. (2014). Climate change 2014: synthesis report. In Core Writing Team: R. K. Pachauri & L. A. Meyer (Eds.), Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (IPCC) Geneva.

  • Jager, W., & Mosler, H. J. (2007). Simulating human behavior for understanding and managing environmental resource use. Journal of Social Issues, 63, 97–116.

    Article  Google Scholar 

  • Janssen, M. A. (1996). Meeting targets: Tools to support integrated assessment modelling of global change. PhD Thesis, University of Maastricht. ISBN 90-9009908-5

  • Janssen, M. A., & de Vries, B. (1998). The battle of perspectives: A multi-agent model with adaptive responses to climate change. Ecological Economics, 26, 43–65.

    Article  Google Scholar 

  • Janssen, M. A., & Ostrom, E. (2006). Governing social–ecological systems. In L. Tesfatsion & K. L. Judd (Eds.), Handbook of computational economics II: Agent-based computational economics (pp. 1465–1509). New York: Elsevier.

    Chapter  Google Scholar 

  • LeBaron, B. (2006). Agent-based computational finance. In L. Tesfastsion & L. J. Kenneth (Eds.), Handbook of Computational Economics 2. Amsterdam: Elsevier.

    Google Scholar 

  • Lorscheid, I., Heine, B. O., & Meyer, M. (2012). Opening the ‘black box’ of simulations: Increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory, 18, 22–62.

    Article  Google Scholar 

  • Lutz, W., Sanderson, W., & Scherbov, S. (2008). IIASA’s 2007 probabilistic world population projections. IIASA world population program online data base of results 2008. http://www.iiasa.ac.at/Research/POP/proj07/index.html?sb=5. Accessed March 15, 2015.

  • Manne, A. S., Mendelsohn, R., & Richels, R. G. (1994). MERGE: A model for evaluating regional and global effects of GHG reduction policies. In N. Nakicenovic, W. D. Nordhaus, R. Richels & F. L. Toth (Eds.), Integrative assessment of mitigation, impacts, and adaptation to climate change (pp. 143–172). CP-94-0, IIASA, Laxenburg.

  • Martens, P., & Rotmans, J. (1999). Climate change: An integrated perspective. Berlin: Springer.

    Book  Google Scholar 

  • Meier-Reimer, E., & Hasselmann, K. (1987). Transport and storage of \(\text{ CO }_{2}\) in the ocean–An inorganic ocean-circulation carbon cacle model. Climate Dynamics, 2, 63–90.

    Article  Google Scholar 

  • Midgley, D. F., Marks, R. E., & Kunchamwar, D. (2007). The building and assurance of agent-based models: An example and challenge to the field. Journal of Business Research, 60, 884–893. (Special Issue: Complexities in Markets).

    Article  Google Scholar 

  • Miller, B. W., & Morisette, J. T. (2014). Integrating research tools to support the management of social–ecological systems under climate change. Ecology and Society, 19(3), 41.

    Article  Google Scholar 

  • Mitchell, M. (1997). An introduction to genetic algorithms (Vol. 3). Cambridge: MIT Press.

    Google Scholar 

  • Moss, S., & Edmonds, B. (2005). Sociology and simulation: Statistical and qualitative cross-validation. American Journal of Sociology, 110, 1095–1131.

    Article  Google Scholar 

  • Moss, S., Pahl-Wostl, C., & Downing, T. (2000). Agent-based integrated assessment modelling: The example of climate change. Integrated Assessment, 2, 17–30.

    Article  Google Scholar 

  • Nannen, V., & van den Bergh, C. J. M. (2010). Policy instruments for evolution of bounded rationality: Application to climate-energy problems. Technological Forecasting & Social Change, 77, 76–93.

    Article  Google Scholar 

  • Natarajan, S., Padget, J., & Elliott, L. (2011). Modelling UK domestic energy and carbon emissions: An agent-based approach. Energy and Buildings, 43(10), 2602–2612.

    Article  Google Scholar 

  • Nordhaus, W. D. (1994). Managing the global commons: The economics of climate change. Cambridge: MIT Press.

    Google Scholar 

  • Nordhaus, W. D. (2008). A question of balance weighing the options on global warming policies. New Haven: Yale University Press.

    Google Scholar 

  • Nordhaus, W. D. & Sztorc, P. (2013). DICE 2013R: Introduction and user’s manual. http://www.econ.yale.edu/~nordhaus/homepage/DICE-science.htm. Accessed February 27, 2015.

  • O’Brien, K. L., Eriksen, S., Nygaard, L., & Schjolden, A. (2007). Why different interpretations of vulnerability matter in climate change discourses. Climate Policy, 7(1), 73–88.

    Article  Google Scholar 

  • Oltedal, S., Moen, B.-E., Klempe, H., & Rundmo, T. (2004). Explaining risk perception. An evaluation of cultural theory. c Rotunde no. 85, Norwegian University of Science and Technology, Department of Psychology. Trondheim: Rotunde

  • Patt, A., & Siebenhüner, B. (2005). Agent-based modeling and adaptation to climate change. Vierteljahrshefte zur Wirtschaftsforschung, 74, 310–320.

    Article  Google Scholar 

  • Peck, S. C., & Teisberg, T. J. (1992). CETA: A model for carbon emissions trajectory assessment. The Energy Journal, 13(1), 55–78.

    Article  Google Scholar 

  • Rachlinski, J. J. (2000). The psychology of global climate change. University of Illinois Law Review, 1, 299–319.

  • Rotmans, J. (1990). IMAGE: An integrated model to assess the greenhouse effect. Ph.D. Thesis. Dordrecht: Kluwer Academic Publishing.

    Book  Google Scholar 

  • Rouchier, J., Cioffi-Revilla, C., Polhill, J. G., & Takadama, K. (2008). Progress in model-to-model analysis. Journal of Artificial Societies and Social Simulation, (11), 28.

  • Schelling, T. C. (2007, July). Climate change: The uncertainties, the certainties, and what they imply about action. The Economists’ Voice, 1–5.

  • Statista. (2015). http://www.statista.com/statistics/276629/global-co2-emissions/. Accessed February 27, 2015.

  • Stern, N. (2007). The economics of climate change: The stern review. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Van den Bergh, J. C. J. M. (2004). Optimal climate policy is a utopia: From quantitative to qualitative cost-benefit analysis. Ecological Economics, 48, 385–393.

    Article  Google Scholar 

  • Van den Bergh, J. C. J. M. (2007). Evolutionary thinking in environmental economics. Journal of Evololutionary Economics, 17, 521–549.

    Article  Google Scholar 

  • Watson, A. J. (2008). Certainty and uncertainty in climate change predictions: What use are climate models? Environmental and Resource Economics, 39, 37–44.

    Article  Google Scholar 

  • Wang, P., Gerst, M. D., & Borsuk, M. E. (2013). Exploring energy and economic futures using agent-based modeling and scenario discovery. In H. Qudrat-Ullah (Ed.), Energy policy modeling in the 21st century. Berlin: Springer.

    Google Scholar 

  • Weber, M., Barth, V., & Hasselmann, K. (2005). A multi-actor dynamic integrated assessment model (MADIAM) of induced technological change and sustainable economic growth. Ecological Economics, 54, 306–327.

    Article  Google Scholar 

  • Weitzman, M. L. (2007). The Stern Review of the economics of climate change. Journal of Economic Literature, 45, 703–724.

    Article  Google Scholar 

  • Werner, B. T., & McNamara, D. E. (2007). Dynamics of coupled human landscape systems. Geomorphology, 91(3–4), 393–407.

    Article  Google Scholar 

  • Weyant, J. P. (2008). A critique of the stern review’s mitigation cost analyses and integrated assessment. Review of Environmental Economics and Policy, 2, 77–93.

    Article  Google Scholar 

  • Wikipedia. (2015). http://en.wikipedia.org/wiki/Gross_world_product#cite_note-2012CIA-2. Accessed February 24, 2015.

  • Wildawski, A., & Sweditorlow, B. (Eds.). (2005). Cultural analysis: Politics, public law and administration. Piscataway: Transaction Publishers.

    Google Scholar 

  • World Bank. (2015). http://data.worldbank.org, Accessed 15 September 2015.

  • Ziervogel, G., Bithell, M., Washingoton, R., & Downing, T. (2005). Agent based social simulation: A method for assessing the impact of seasonal climate forecast applications among smallholder farmers. Agricultural Systems, 83(1), 1–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Geisendorf.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

No research involving human or animal participants has been conducted for the purposes of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geisendorf, S. Evolutionary Climate-Change Modelling: A Multi-Agent Climate-Economic Model. Comput Econ 52, 921–951 (2018). https://doi.org/10.1007/s10614-017-9740-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-017-9740-2

Keywords

Navigation