Skip to main content
Log in

A Reinforcement Learning Approach to Interval Constraint Propagation

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

When solving systems of nonlinear equations with interval constraint methods, it has often been observed that many calls to contracting operators do not participate actively to the reduction of the search space. Attempts to statically select a subset of efficient contracting operators fail to offer reliable performance speed-ups. By embedding the recency-weighted average Reinforcement Learning method into a constraint propagation algorithm to dynamically learn the best operators, we show that it is possible to obtain robust algorithms with reliable performances on a range of sparse problems. Using a simple heuristic to compute initial weights, we also achieve significant performance speed-ups for dense problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E. (2002). The non-stochastic multi-armed bandit problem. SIAM Journal on Computing, 32(1), 48–77.

    Article  MathSciNet  MATH  Google Scholar 

  2. Auer, P., Cesa-Bianchi, N., Freund, Y., & Shapire, R. E. (1995). Gambling in a rigged casino: The adversarial multi-armed bandit problem. In Proceedings of the 36th annual symposium on foundations of computer science (FOCS ’95), pp. 322–331. IEEE Computer Society Press.

  3. Benhamou, F. (2001). Interval constraints, interval propagation. In P. M. Pardalos, & C. A. Floudas (Eds.), Encyclopedia of Optimization, vol. 3, pp. 45–48. Kluwer Academic Publishers.

  4. Benhamou, F., McAllester, D., & Van Hentenryck, P. (1994). CLP(Intervals) revisited. In Proceedings international symposium on logic program, pp. 124–138. The MIT Press.

  5. Dixon, L. C. W., & Szegö, G. P. (1978). The global optimization problem: An introduction. In L. C. W. Dixon & G. P. Szegö (Eds.), Towards Global Optimization 2, pp. 1–15. North-Holland.

  6. Duff, I. S. (1981). On algorithms for obtaining a maximum transversal. ACM Transactions on Mathematical Software, 7(3), 315–330, (September).

    Article  Google Scholar 

  7. Goualard, F. (2005). On considering an interval constraint solving algorithm as a free-steering nonlinear gauss-seidel procedure. In Proceedings of the 20th annual ACM symposium on applied computing (reliable computation and applications track), vol. 2, pp. 1434–1438. The Association for Computing Machinery, Inc, (March).

  8. Goualard, F., & Jermann, C. (2006). On the selection of a transversal to solve nonlinear systems with interval arithmetic. In V. N. Alexandrov et al. (Eds.), Proceedings international conference on computational science 2006, Lecture Notes in Computer Science, vol. 3991, pp. 332–339. Springer-Verlag.

  9. Granvilliers, L., & Hains, G. (2000). A conservative scheme for parallel interval narrowing. Information Processing Letters, 74, 141–146.

    Article  MathSciNet  Google Scholar 

  10. Hansen. E. R., & Sengupta, S. (1981). Bounding solutions of systems of equations using interval analysis. Bibliothek Information Technologie, 21, 203–211.

    MathSciNet  MATH  Google Scholar 

  11. Herbort, S., & Ratz, D. (1997). Improving the efficiency of a nonlinear-system-solver using a componentwise newton method. Research Report 2/1997, Institut für Angewandte Mathematik, Universität Karslruhe (TH).

  12. Hickey, T. J., Ju, Q., & Van Emden, M. H. (2001). Interval arithmetic: From principles to implementation. J. ACM, 48(5), 1038–1068, (September).

    Article  MathSciNet  Google Scholar 

  13. IEEE (1990). IEEE standard for binary floating-point arithmetic. Technical Report IEEE Std 754-1985, Institute of Electrical and Electronics Engineers, 1985. Reaffirmed 1990.

  14. INRIA Project COPRIN: Contraintes, OPtimisation, Résolution par INtervalles. The COPRIN examples page. Web page at http://www-sop.inria.fr/coprin/logiciels/ALIAS/Benches/benches.html.

  15. Kearfott, R. B., Hu, C., & Novoa, M. III (1991). A review of preconditioners for the interval Gauss-Seidel method. Interval Computations, 1, 59–85.

    MathSciNet  Google Scholar 

  16. Kearfott, R. B., & Shi, X. (1996). Optimal preconditioners for interval gauss-seidel methods. In G. Alefeld & A. Frommer (Eds.), Scientific Computing and Validated Numerics, pp. 173–178. Akademie Verlag.

  17. Lebbah, Y., & Lhomme, O. (2002). Accelerating filtering techniques for numeric csps. Artificial Intelligence, 139(1), 109–132.

    Article  MathSciNet  MATH  Google Scholar 

  18. Luksan, L., & Vlcek, J. (1998). Sparse and partially separable test problems for unconstrained and equality constrained optimization. Research Report V767-98, Institute of Computer Science, Academy of Science of the Czech Republic, (December).

  19. Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 1(8), 99–118.

    Article  Google Scholar 

  20. Moore, R. E. (1966). Interval Analysis. Prentice-Hall, Englewood Cliffs, N. J.

    MATH  Google Scholar 

  21. Moré, J. J., & Cosnard, M. Y. (1979). Numerical solutions of nonlinear equations. ACM Transactions on Mathematical Software, 5, 64–85.

    Article  MATH  Google Scholar 

  22. Neumaier, A. (1990). Interval methods for systems of equations, Encyclopedia of Mathematics and its Applications, vol. 37. Cambridge University Press.

  23. Ortega, J. M., & Rheinboldt, W. C. (1970). Iterative solutions of nonlinear equations in several variables. Academic Press Inc.

  24. Ratschek, H., & Rokne, J. (1995). Interval methods. In Handbook of global optimization, pp. 751–828. Kluwer Academic.

  25. Sotiropoulos, D. G., Nikas, J. A., & Grapsa, T. N. (2002). Improving the efficiency of a polynomial system solver via a reordering technique. In Proceedings 4th GRACM congress on computational mechanics, vol. III, pp. 970–976.

  26. Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. MIT Press.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Jermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goualard, F., Jermann, C. A Reinforcement Learning Approach to Interval Constraint Propagation. Constraints 13, 206–226 (2008). https://doi.org/10.1007/s10601-007-9027-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-007-9027-7

Keywords

Navigation