Skip to main content

Advertisement

Log in

Brown Alga Metabolites – Inhibitors of Marine Organism Fucoidan Hydrolases

  • Published:
Chemistry of Natural Compounds Aims and scope

Fucoidan hydrolase inhibitors were discovered for the first time. Metabolites in the aqueous EtOH extract of Fucus evanescens inhibited specifically the activity of enzymes involved in catabolism of brown-alga polysaccharides, i.e., fucoidanases (recombinant FFA from the marine bacterium Formosa algae KMM 3553T and PPF from the marine mollusk Patinopecten yessoensis) and glycosidases (recombinant α-L-fucosidase FucFa from F. algae and β-D-glucosidase G-II from the marine mollusk Littorina sitkana). The purified fucophlorethol fraction isolated from this extract inhibited recombinant fucoidanase FFA in the concentration range 10–50 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. R. R. Rengasamy, M. G. Kulkarni, W. A. Stirk, and J. Van Staden, Biotechnol. Adv., 32, 1364 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. N. Asano, Cell. Mol. Life Sci., 66, 1479 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. V. V. Agarkova, T. N. Krupnova, S. P. Ermakova, N. M. Shevchenko, and T. N. Zvyagintseva, Prikl. Biokhim. Mikrobiol., 43, 511 (2007).

    CAS  PubMed  Google Scholar 

  4. T. Shibata, K. Yamaguchi, K. Nagayama, Sh. Kawaguchi, and T. Nakamura, Eur. J. Phycol., 37, 493 (2002).

    Article  Google Scholar 

  5. M. I. Kusaykin, A. S. Silchenko, A. M. Zakharenko, and T. N. Zvyagintseva, Glycobiology, 26 (1), 3 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. K. Kitamura, M. Matsuo, and T. Yasui, Biosci. Biotechnol. Biochem., 56 (3), 490 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. A. S. Silchenko, M. I. Kusaykin, V. V. Kurilenko, A. M. Zakharenko, V. V. Isakov, and T. N. Zvyagintseva, Mar. Drugs, 11 (7), 2413 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  8. A. S. Silchenko, M. I. Kusaykin, A. M. Zakharenko, R. V. Menshova, H. H. N. Khah, P. S. Dmitrenok, V. V. Isakov, and T. N. Zvyagintseva, J. Mol. Catal. B: Enzym., 102, 154 (2014).

    Article  CAS  Google Scholar 

  9. M. S. Pesentseva, M. I. Kusaykin, S. D. Anastyuk, V. V. Sova, and T. N. Zvyagintseva, Carbohydr. Res., 343, 2393 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. M. I. Bilan, A. A. Grachev, N. E. Ustuzhanina, A. S. Shashkov, N. E. Nifantiev, and A. I. Usov, Carbohydr. Res., 337, 719 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. A. G. McInnes, M. A. Ragan, D. G. Smith, and J. A. Walter, Hydrobiologia, 116/117, 597 (1984).

  12. S. Parys, St. Kehraus, A. Krik, K.-W. Glombitza, Sh. Carmeli, K. Klimo, Cl. Gerhauzer, and G. M. Konig, Phytochemistry, 71, 221 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Sugiura, K. Matsuda, Y. Yamada, M. Nishikawa, K. Shioya, H. Katsuzaki, K. Imai, and H. Amano, Biosci. Biotechnol. Biochem., 70 (11), 2807 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. S. Cerantola, F. Breton, E. A. Gall, and E. Deslandes, Bot. Mar., 49, 347 (2006).

    Article  CAS  Google Scholar 

  15. N. Heffernan, N. P. Brunton, R. J. FitzGerald, and T. J. Smyth, Mar. Drugs, 13, 509 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. R. Koivikko, J. Loponen, T. Honkanen, and V. Jormalainen, J. Chem. Ecol., 31, 195 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. T. I. Imbs, A. V. Skriptsova, and T. N. Zvyagintseva, J. Appl. Phycol., 27, 545 (2015).

    Article  CAS  Google Scholar 

  18. A. V. Skriptsova, N. M. Shevchenko, T. N. Zvyagintseva, and T. I. Imbs, J. Appl. Phycol., 22, 79 (2010).

    Article  CAS  Google Scholar 

  19. M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and T. L. Madden, Nucleic Acid Res. (Web Server Issue), 36, 5 (2008).

  20. F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J. D. Thompson, and D. G. Higgins, Mol. Syst. Biol., 7 (539), 1 (2011).

    Google Scholar 

  21. O. Emanuelsson, S. Brunak, G. von Heijne, and H. Nielsen, Nat. Protoc., 2, 953 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. P. Jones, D. Binns, H. Y. Chang, M. Fraser, W. Li, C. McAnulla, H. McWilliam, J. Maslen, A. Mitchell, G. Nuka, S. Pesseat, A. F. Quinn, A. Sangrador-Vegas, M. Scheremetjew, S. Y. Yong, R. Lopez, and S. Hunter, Bioinformatics, 30 (9), 1236 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. F. van den Ent and J. Lowe, J. Biochem. Biophys. Methods, 67 (1), 67 (2006).

    Article  PubMed  Google Scholar 

  24. T. E. Nelson, J. V. Scarletti, F. Smith, and S. Kirkwood, Can. J. Chem., 245, 1671 (1962).

    Google Scholar 

  25. U. K. Laemmli, Nature, 277 (5259), 680 (1970).

    Article  Google Scholar 

Download references

Acknowledgment

The work was supported by RFBR Grant No. 15-04-01004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Zvyagintseva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silchenko, A.S., Imbs, T.I., Zvyagintseva, T.N. et al. Brown Alga Metabolites – Inhibitors of Marine Organism Fucoidan Hydrolases. Chem Nat Compd 53, 345–350 (2017). https://doi.org/10.1007/s10600-017-1985-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-017-1985-4

Keywords

Navigation