Skip to main content
Log in

Guaranteed Deterministic Approach to Superhedging: A Numerical Experiment

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

We consider a guaranteed deterministic approach to discrete-time super-replication for guaranteed coverage of contingent claims on options for all possible asset-price scenarios. Price increases during a period are assumed to be contained in a priori specified compacta dependent on price history. A game problem is stated and reduced to the solution of the corresponding Bellman–Isaacs equation. Numerical solution algorithms on a discrete lattice are considered for the Bellman–Isaacs equation. Results of a numerical experiment are reported for various model specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Smirnov, “Guaranteed deterministic approach to superhedging: sensitivity of solutions of Bellman–Isaacs equations and numerical methods,” Computational Mathematics and Modeling, 31, No. 3, 384–401 (2020).

  2. S. N. Smirnov, “Guaranteed deterministic approach to superhedging: market model, trading constraints, no arbitrage, and Bellman–Isaacs equations,” Matematicheskaya Teoriya Igr i Ee Prilozheniya, 10, No. 4, 59–99 (2018).

  3. S. N. Smirnov, “Guaranteed deterministic approach to superhedging: properties of “no agribtrage” markets,” Matematicheskaya Teoriya Igr i Ee Prilozheniya, 11, No. 2, 68–95 (2019).

  4. S. N. Smirnov, “Guaranteed deterministic approach to superhedging: semicontinuity and continuity of the solutions of the Bellman–Isaacs equations,” Matematicheskaya Teoriya Igr i Ee Prilozheniya, 11, No. 4, 87–115 (2019).

  5. S. N. Smirnov, “A guaranteed deterministic approach to superhedging: Lipschitz properties of solutions of the Bellman–Isaacs equations,” in: Frontiers of Dynamic Games. Game Theory and Management, St. Peterburg, Birkhauser, Cham (2019), pp. 267–288.

  6. S. N. Smirnov, “Guaranteed deterministic approach to superhedging: mixed strategies and game equilibrium,” Matematicheskaya Teoriya Igr i Ee Prilozheniya, 12, No. 1, 60–90 (2020).

  7. S. N. Smirnov, “Guaranteed deterministic approach to superhedging: worst-case scenarios of market behavior and the moment problem,” Matematicheskaya Teoriya Igr i Ee Prilozheniya, 12, No. 3, 50–88 (2020).

  8. S. N. Smirnov, “A guaranteed deterministic approach to superhedging: case of the convex payoff functions on option,” Mathematics, 7, No. 1246, 1–19 (2019).

  9. J. E. Goodman, J. O’Rourke, and C. D. Toth, eds., Handbook of Discrete and Computational Geometry, 3rd ed., CRC Press, Boca Raton (2017).

  10. A. N. Gamby and J. Katajainen, “Convex-hull algorithms: implementation, testing and experimentation,” Algorithms, 11, 195 (2018).

    Article  MathSciNet  Google Scholar 

  11. Y. Lucet, “What shape is your conjugate? A survey of computational convex analysis and its applications,” SIAM Review, 52, No. 3, 505–542 (2010).

  12. L. Contento, “The discrete Legendre–Fenchel Transform and its application to phase separation in electrolytes,” University of Udine (2012); http://hal.archives-ouvertes.fr/hal-00806085.

  13. P. Awasthi, B. Kalantari, and Y. Zhang, “Robust vertex enumeration for convex hulls in high dimensions,” Proceedings of the Twenty-First International Conference on Artificial Intelligence and Statistics, PMLR, 84, 1387–1396 (2018).

  14. C. B. Barber, D. P. Dobkin, H. Huhdanpaa, “The quickhull algorithm for convex hulls,” ACM Trans. Math. Software, 22, 469–483 (1996).

    Article  MathSciNet  Google Scholar 

  15. D. Bremner, K. Fukuda, and A. Marzetta, “Primal-dual methods for vertex and facet enumeration,” Discrete Comput. Geom., 20, 333–357 (1998).

    Article  MathSciNet  Google Scholar 

  16. D. Avis and C. Jordan, Comparative Computational Results for Some Vertex and Facet Enumeration Codes (2018); http://arxiv.org/abs/1510.02545v3.

  17. Y. Yang, A Facet Enumeration Algorithm for Convex Polytopes (2019); http://arxiv.org/abs/1909.11843v1.

  18. A. Favorsky, P. Mikhailova, and S. Smirnov, “Monotone numerical methods for the option pricing and hedging models,” The 3rd Moscow International Conference on Operations Research (ORM2001), Moscow, Apr. 4–6, 2001, Abstracts, Vychisl. Tsentr RAN, Moscow (2001).

  19. J.-J. Moreau, “Proximité et dualité dans un espace hilbertien,” Bull. Soc. Math. France, 93, 273–299 (1965).

    Article  MathSciNet  Google Scholar 

  20. D. P. Bertsekas, “Approximation procedures based on the method of multipliers,” J. Optimization Theory and Applications, 23, 487–510 (1977).

    Article  MathSciNet  Google Scholar 

  21. P. Bernhard, J. C. Engwerda, B. Roorda, J. Schumacher, V. Kolokoltsov, P. Saint-Pierre, and J.-P. Aubin, The Interval Market Model in Mathematical Finance: Game-Theoretic Methods, Springer, New York (2013).

    Book  Google Scholar 

  22. W. Gander, G. H. Golub, and U. Van Mott, “A constrained eigenvalue problem,” Linear Algebra Appl., 114–115, 815–839 (1989).

    Article  MathSciNet  Google Scholar 

  23. V. N. Ushakov and A. A. Ershov, “A Hausdorff bound on the distance between a set and its convex hull in low-dimensional Euclidean space,” Trudy Inst. Matem. Mekhan. UrO RAN, 24, No. 1, 223–235 (2018).

    Google Scholar 

  24. R. Rockafellar, Convex Analysis [Russian translation], Mir, Moscow (1973).

    Google Scholar 

  25. R. M. Starr, “Quasi-equilibria in markets with non-convex preferences,” Econometrica, 37, No. 1, 25–38 (1969).

  26. K. Leichtweiss, Convex Sets [Russian translation], Nauka, Moscow (1985).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Andreev.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 65, 2021, pp. 31–60.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, N.A., Smirnov, S.N. Guaranteed Deterministic Approach to Superhedging: A Numerical Experiment. Comput Math Model 32, 22–44 (2021). https://doi.org/10.1007/s10598-021-09514-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-021-09514-1

Keywords

Navigation