Skip to main content

Advertisement

Log in

The genetic structure of the European breeding populations of a declining farmland bird, the ortolan bunting (Emberiza hortulana), reveals conservation priorities

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Anthropogenic activities, such as agricultural intensification, caused large declines in biodiversity, including farmland birds. In addition to demographic consequences, anthropogenic activities can result in loss of genetic diversity, reduction of gene flow and altered genetic structure. We investigated the distribution of the genetic variation of a declining farmland and long-distance migratory bird, the ortolan bunting Emberiza hortulana, across its European breeding range to assess the impact of human-driven population declines on genetic diversity and structure in order to advise conservation priorities. The large population declines observed have not resulted in dramatic loss of genetic diversity, which is moderate to high and constant across all sampled breeding sites. Extensive gene flow occurs across the breeding range, even across a migratory divide, which contributes little to genetic structuring. However, gene flow is asymmetric, with the large eastern populations acting as source populations for the smaller western ones. Furthermore, breeding populations that underwent the largest declines, in Fennoscandia and Baltic countries, appear to be recently isolated, with no gene exchange occurring with the eastern or the western populations. These are signs for concern as declines in the eastern populations could affect the strength of gene flow and in turn affect the western populations. The genetic, and demographic, isolation of the northern populations make them particularly sensitive to loss of genetic diversity and to extinction as no immigration is occurring to counter-act the drastic declines. In such a situation, conservation efforts are needed across the whole breeding range: in particular, protecting the eastern populations due to their key role in maintaining gene flow across the range, and focussing on the northern populations due to their recent isolation and endangered status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Belkhir K, Borsa P, Chikhi L et al (2004) GENETIX 4.05, logiciel sous Windows TM pour la genetique des populations. Université de Montpellier II, Montpellier

    Google Scholar 

  • Bensch S, Andersson T, Akesson S (1999) Morphological and molecular variation across a migratory divide in Willow Warblers, Phylloscopus trochilus. Evolution 53:1925–1935

    Article  PubMed  Google Scholar 

  • Benton TG, Bryant DM, Cole L, Crick HQP (2002) Linking agricultural practice to insect and bird populations: a historical study over three decades. J Appl Ecol 39:673–687

    Article  Google Scholar 

  • Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5:117–129

    Article  PubMed  CAS  Google Scholar 

  • BirdLife International (2015) Species factsheet: Emberiza hortulana. http://www.birdlife.org. Accessed Sept 2016

  • Cousseau L, Husemann M, Foppen R et al (2016) A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows. Heredity 117:259–267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crochet P-A (2000) Genetic structure of avian populations: allozymes revisited. Mol Ecol 9:1463–1469

    Article  PubMed  CAS  Google Scholar 

  • Dale S (2001) Female-biased dispersal, low female recruitment, unpaired males, and the extinction of small and isolated bird populations. Oikos 92:344–356

    Article  Google Scholar 

  • Dale S (2010) Sibling resemblance in natal dispersal distance and direction in the ortolan bunting Emberiza hortulana. Ibis 152:292–298

    Article  Google Scholar 

  • Dale S, Lunde A, Steifetten Ø (2005) Longer breeding dispersal than natal dispersal in the ortolan bunting. Behav Ecol 16:20–24

    Article  Google Scholar 

  • Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc R Soc London Ser B 268:25–29

    Article  Google Scholar 

  • Donald PF, Sanderson FJ, Burfield IJ, van Bommel FPJ (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agric Ecosyst Environ 116:189–196

    Article  Google Scholar 

  • Earl DA, VonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Eif JR (2013) Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol 48:1–16

    Article  Google Scholar 

  • Elts J, Tätte K, Marja R (2015) What are the important landscape components for habitat selection of the ortolan bunting Emberiza hortulana in northern limit of range? Eur J Ecol 1:13–25

    Article  Google Scholar 

  • Epps CW, Keyghobadi N (2015) Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol 24:6021–6040

    Article  PubMed  Google Scholar 

  • Eurostat (2016) Land cover, land use and landscape. https://ec.europa.eu/eurostat/statistics-explained/index.php/Land_cover,_land_use_and_landscape. Accessed Sept 2016

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fourcade Y, Richardson DS, Keiss O et al (2016) Corncrake conservation genetics at a European scale: the impact of biogeographical and anthropological processes. Biol Conserv 198:210–219

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2004) Introduction to conservation genetics, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/software. Accessed Sept 2016

  • Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–186

    Article  Google Scholar 

  • Goudet J, Raymond M, de Meeüs T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed  PubMed Central  CAS  Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Gregory RD, Strien A, Van Vorisek P et al (2005) Developing indicators for European birds. Philos Trans R Soc B 360:269–288

    Article  Google Scholar 

  • Hoffman JI, Simpson F, Lacy RC et al (2014) High-throughput sequencing reveals inbreeding depression in a natural population. Proc Natl Acad Sci USA 111:3775–3780

    Article  PubMed  CAS  Google Scholar 

  • Jakobsson M, Rosenberg N (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jiguet F, Arlettaz R, Bauer H et al (2016a) An update of the European breeding population sizes and trends of the ortolan bunting (Emberiza hortulana). Ornis Fenn 93:186–196

    Google Scholar 

  • Jiguet F, Arlettaz R, Belik V et al (2016b) Migration strategy of the ortolan bunting: final report of the scientific committee. MNHN, Paris. https://spn.mnhn.fr/servicepatrimoinenaturel/images/COMMUNICATION/SUPPORTS/AUTRES_RAPPORTS/FinalReportortolanandappendices.zip

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kamp J, Urazaliev R, Donald PF, Hölzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Conserv 144:2607–2614

    Article  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kvist L, Ponnikas S, Belda EJ et al (2011) Endangered subspecies of the reed bunting (Emberiza schoeniclus witherbyi and E. s. lusitanica) in Iberian Peninsula have different genetic structures. J Ornithol 152:681–693

    Article  Google Scholar 

  • Menz MHM, Arlettaz R (2011) The precipitous decline of the ortolan bunting Emberiza hortulana: time to build on scientific evidence to inform conservation management. Oryx 46:122–129

    Article  Google Scholar 

  • Menz MHM, Mosimann-Kampe P, Arlettaz R (2009) Foraging habitat selection in the last ortolan bunting Emberiza hortulana population in Switzerland: final lessons before extinction. Ardea 97:323–333

    Article  Google Scholar 

  • Mettler R, Martin Schaefer H, Chernetsov N et al (2013) Contrasting patterns of genetic differentiation among blackcaps (Sylvia atricapilla) with divergent migratory orientations in Europe. PLoS ONE 8:1–12

    Article  Google Scholar 

  • Mimura M, Yahara T, Faith DP et al (2017) Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol Appl 10:121–139

    Article  PubMed  Google Scholar 

  • Moussy C, Hosken DJ, Mathews F et al (2013) Migration and dispersal patterns of bats and their influence on genetic structure. Mamm Rev 43:183–195

    Article  Google Scholar 

  • Norris K (2008) Agriculture and biodiversity conservation: opportunity knocks. Conserv Lett 1:2–11

    Article  Google Scholar 

  • Pan-European Common Bird Monitoring Scheme (2016) Species population trends. http://www.ebcc.info/index.php?ID=612. Accessed Sept 2016

  • Paradis E (2010) Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  PubMed  CAS  Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67:518–536

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM et al (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  PubMed  CAS  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C et al (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25:345–353

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Prochazka P, Stokke BG, Jensen H et al (2011) Low genetic differentiation among reed warbler Acrocephalus scirpaceus populations across Europe. J Avian Biol 42:103–113

    Article  Google Scholar 

  • R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna http://www.R-project.org/

  • Rambaut A, Drummond A (2009) Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer. Accessed Sept 2016

  • Ramos R, Song G, Navarro J et al (2016) Population genetic structure and long-distance dispersal of a recently expanding migratory bird. Mol Phylogenet Evol 99:194–203

    Article  PubMed  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  PubMed  CAS  Google Scholar 

  • Reidsma P, Tekelenburg T, Van Den Berg M, Alkemade R (2006) Impacts of land-use change on biodiversity: an assessment of agricultural biodiversity in the European Union. Agric Ecosyst Environ 114:86–102

    Article  Google Scholar 

  • Rice W (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  PubMed  Google Scholar 

  • Rolshausen G, Segelbacher G, Hobson KA, Schaefer HM (2009) Contemporary evolution of reproductive isolation and phenotypic divergence in sympatry along a migratory divide. Curr Biol 19:2097–2101

    Article  PubMed  CAS  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Salin F (2013) AutoBin. https://www6.bordeaux-aquitaine.inra.fr/biogeco/Production-scientifique/Logiciels/Autobin. Accessed Sept 2016

  • Sarrazin F, Lecomte J (2016) Evolution in the anthropocene. Science 351:922–924

    Article  PubMed  CAS  Google Scholar 

  • Schindler DE, Armstrong JB, Reed TE (2015) The portfolio concept in ecology and evolution. Front Ecol Environ 13:257–263

    Article  Google Scholar 

  • Selstam G, Sondell JAN, Olsson P (2015) Wintering area and migration routes for ortolan buntings Emberiza hortulana from Sweden determined with light-geologgers. Ornis Svecica 25:3–15

    Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Vepsäläinen V, Pakkala T, Piha M, Tiainen J (2005) Population crash of the ortolan bunting Emberiza hortulana in agricultural landscapes of southern Finland. Ann Zool Fennici 42:91–107

    Google Scholar 

  • Vepsäläinen V, Pakkala T, Piha M, Tiainen J (2007) The importance of breeding groups for territory occupancy in a declining population of a farmland passerine bird. Ann Zool Fennici 44:8–19

    Google Scholar 

  • Wan Q-H, Wu H, Fujihara T, Fang S-G (2004) Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Schroeder KB, Rosenberg NA (2012) A Maximum-likelihood method to correct for allelic dropout in microsatellite data with no replicate genotypes. Genetics 192:651–669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370

    PubMed  CAS  Google Scholar 

  • Wilson G, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was funded by a grant obtained from the LabEx BCDiv at the MNHN. It was part of a global research investigating the migration strategy of the species funded by the French Ministry of Ecology (Ministère de l’Écologie, du Développement Durable et de l’Énergie), Fédération Départementale des Chasseurs des Landes, Conseil Général des Landes, Conseil Régional d’Aquitaine, and Association de Défense des Chasses Traditionnelles à la Matole. This study was possible thanks to international collaboration and we are grateful to all participants to field work for collecting samples for genetic analysis. In particular, we offer our thanks to Maxime Zucca, Romain Provost, Benoit Fontaine, Anne-Christine Monnet, Simon Rolland, Pierre Fiquet, Lionel Courmont, Sébastien Blache, Dzmitry Zhurauliou, Pavel Kharytonau, Juha Honkala, Tuomo Jaakkonen, Johanna Lakka, Lars Erik Johannessen, Marc Pérez and Carlos Grande. We also would like to thank the staff at the Service de Systématique Moléculaire UMS2700 for their advice and assistance during molecular work, especially Regis Debruyne for his assistance in the shot-gun sequencing on the Ion Torrent platform and in HRM analysis, Jawad Abdelkrim for advice in processing the NGS reads and Josie Lambourdière for sharing her invaluable experience in developing and optimizing the microsatellite loci. PCR products were genotyped at the Gentyane platform, INRA Clermont-Ferrand, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Jiguet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussy, C., Arlettaz, R., Copete, J.L. et al. The genetic structure of the European breeding populations of a declining farmland bird, the ortolan bunting (Emberiza hortulana), reveals conservation priorities. Conserv Genet 19, 909–922 (2018). https://doi.org/10.1007/s10592-018-1064-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1064-9

Keywords

Navigation