Skip to main content

Advertisement

Log in

Can captive populations function as sources of genetic variation for reintroductions into the wild? A case study of the Arabian oryx from the Phoenix Zoo and the Shaumari Wildlife Reserve, Jordan

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The Arabian oryx (Oryx leucoryx) historically ranged across the Arabian Peninsula and neighboring countries until its extirpation in 1972. In 1963–1964 a captive breeding program for this species was started at the Phoenix Zoo (PHX); it ultimately consisted of 11 animals that became known as the ‘World Herd’. In 19781979 a wild population was established at the Shaumari Wildlife Reserve (SWR), Jordan, with eight descendants from the World Herd and three individuals from Qatar. We described the mtDNA and nuclear genetic diversity and structure of PHX and SWR. We also determined the long-term demographic and genetic viability of these populations under different reciprocal translocation scenarios. PHX displayed a greater number of mtDNA haplotypes (n = 4) than SWR (n = 2). Additionally, PHX and SWR presented nuclear genetic diversities of \(\bar{N}_{\text{A}}\) = 2.88 vs. 2.75, \(\bar{H}_{\text{O}}\) = 0.469 vs. 0.387, and \(\bar{H}_{\text{E}}\) = 0.501 vs. 0.421, respectively. Although these populations showed no signs of inbreeding (\(\bar{F}_{\text{IS}}\) ≈ 0), they were highly differentiated (\(G^{\prime\prime}_{\text{ST}}\) = 0.580; P < 0.001). Migration between PHX and SWR (Nm = 1, 4, and 8 individuals/generation) increased their genetic diversity in the short-term and substantially reduced the probability of extinction in PHX during 25 generations. Under such scenarios, maximum genetic diversities were achieved in the first generations before the effects of genetic drift became predominant. Although captive populations can function as sources of genetic variation for reintroduction programs, we recommend promoting mutual and continuous gene flow with wild populations to ensure the long-term survival of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu-Jafar MZ, Hays-Shahin C (1988) Re-introduction of the Arabian oryx into Jordan. In: Dixon A, Jones D (eds) Conservation and biology of desert antelopes. Christopher Helm Ltd., London, pp 35–40

    Google Scholar 

  • Allendorf F, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Oxford

    Google Scholar 

  • Arif IA, Khan HA, Shobrak M, Al Homaidan AA, Al Sadoon M, Al Farhan AH (2010) Measuring the genetic diversity of Arabian oryx using microsatellite markers: implication for captive breeding. Genes Genet Syst 85:141–145

    Article  CAS  PubMed  Google Scholar 

  • Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Boutelle S, Lenahan K, Krisher R, Bauman KL, Asa CS, Silber S (2011) Vitrification of oocytes from endangered Mexicna gray wolves (Canis lupus baileyi). Theriogenology 75:647–654

    Article  CAS  PubMed  Google Scholar 

  • Buchanan FC, Crawford AM (1993) Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266 and OarFCB304 loci. Anim Genet 24:145

    Article  CAS  PubMed  Google Scholar 

  • Clarke AG (2009) The Frozen Ark Project: the role of zoos and aquariums in preserving the genetic material of threatened animals. Int Zoo Yearb 43:222–230

    Article  Google Scholar 

  • Comizzoli P, Mermillod P, Mauget R (2000) Reproductive biotechnologies for endangered mammalian species. Reprod Nutr Dev 40:493–504

    Article  CAS  PubMed  Google Scholar 

  • Cribiu EP, Asmondé JF, Durand V, Greth A, Anagariyah S (1990) Robertsonian chromosome polymorphism in the Arabian oryx (Oryx leucoryx). Cytogenet Cell Genet 54:161–163

    Article  CAS  PubMed  Google Scholar 

  • Cribiu EP, Vassart M, Durand V, Greth A, Asmodé J-F, Claro F, Anagariyah S (1991) Distribution of the 17;19 Robertsonian translocation in a herd of Arabian oryx. Mammalia 55:121–126

    Article  Google Scholar 

  • Der Sarkissian C, Ermini L, Schubert M, Yang MA, Librado P, Fumagalli M, Jónsson H, Kahila Bar-Gal G, Albrechtsen A, Vieira FG, Petersen B, Ginolhac A, Seguin-Orlando A, Magnussen K, Fages A, Gamba C, Lorente-Galdos B, Polani S, Steiner C, Neuditschko M, Jagannathan V, Feh C, Greenblatt CL, Ludwig A, Abramson NI, Zimmermann W, Schafberg R, Tikhonov A, Sicheritz-Ponten T, Willerslev E, Marques-Bonet T, Ryder OA, McCue M, Rieder S, Leeb T, Slatkin M, Orlando L (2015) Evolutionary genomics and conservation of the endangered Przewalski’s horse. Curr Biol 25:2577–2583

    Article  Google Scholar 

  • Ede AJ, Pierson CA, Crawford AM (1995) Ovine microsatellites at the OarCP9, OarCP16, OarCP20, OarCP21, OarCP23 and OarCP26 loci. Anim Genet 26:129–130

    Article  CAS  PubMed  Google Scholar 

  • Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475

    Article  PubMed  Google Scholar 

  • El Alqamy H, Senn H, Roberts M-F, McEwing R, Ogden R (2012) Genetic assessment of the Arabian oryx founder population in the Emirate of Abu Dhabi, UAE: an example of evaluating unmanaged captive stocks for reintroduction. Conserv Genet 13:79–88

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fickel J, Wagener A, Ludwig A (2007) Semen cryopreservation and the conservation of endangered species. Eur J Wildl Res 53:81–89

    Article  Google Scholar 

  • Frankham R (1995) Conservation genetics. Ann Rev Genet 29:305–327

    Article  CAS  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambrigde University Press, Cambridge

    Book  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Anim Conserv 1:69–70

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Gompert Z (2012) Population genomics as a new tool for wildlife management. Mol Ecol 21:1542–1544

    Article  PubMed  Google Scholar 

  • Goodwin I (2014) International studbook for Arabian oryx (Oryx leucoryx). Marwell Wildlife, Winchester

    Google Scholar 

  • Grimwood I (1967) Operation Oryx: the three stages of captive breeding. Oryx 9:110–118

    Article  Google Scholar 

  • Harding LE, Abu-Eid OF, Hamidan N, al Sha’lan A (2007) Reintroduction of the Arabian oryx Oryx leucoryx in Jordan: war and redemption. Oryx 41:478–487

    Article  Google Scholar 

  • Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7:1008–1025

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedrick PW, Fredrickson RJ (2008) Captive breeding and the reintroduction of Mexican and red wolves. Mol Ecol 17:344–350

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Ann Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Henderson DS (1974) Were they the last Arabian oryx? Oryx 12:347–350

    Article  Google Scholar 

  • Homan WG (1988) The establishment of the World Herd. In: Dixon A, Jones D (eds) Conservation and biology of desert antelopes. Christopher Helm Ltd., London, pp 9–13

    Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivy JA, Lacy RC (2012) A comparison of strategies for selecting breeding pairs to maximize genetic diversity retention in managed populations. J Hered 103:186–196

    Article  PubMed  Google Scholar 

  • Jones DM (1990) Arabian oryx in Qatar. Unpublished report. Zoological Society of London, London

  • Khan HA, Arif IA, Shobrak M, Homaidan AA, Farhan AH, Sadoon MA (2011) Application of mitochondrial genes sequences for measuring the genetic diversity of Arabian oryx. Genes Genet Syst 86:67–72

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood JK (2003) Welfare, husbandry and veterinary care of wild animals in captivity: changes in attitude, progress in knowledge and techniques. Int Zoo Yearb 38:124–130

    Article  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Lacy RC (1997) Importance of genetic variation to the viability of mammalian populations. J Mamm 78:320–335

    Article  Google Scholar 

  • Lacy RC, Pollak JP (2014) Vortex: a stochastic simulation of the extinction process v10.0. Chicago Zoological Society, Brookfield

    Google Scholar 

  • MacHugh DE, Shriver MD, Loftus RT, Cunningham P, Bradley DG (1997) Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146:1071–1086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marker L, O’Brien SJ (1989) Captive breeding of the cheetah (Acinonyx jubatus) in North American zoos (1871–1986). Zoo Biol 8:3–16

    Article  Google Scholar 

  • Marshall TC (1998) Inbreeding and fitness in wild ungulates. PhD thesis. University of Edinburgh, Edinburgh

    Google Scholar 

  • Marshall TC, Spalton JA (2000) Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx. Anim Conserv 3:241–248

    Article  Google Scholar 

  • Marshall TC, Sunnucks P, Spalton JA, Greth A, Pemberton JM (1999) Use of genetic data for conservation management: the case of the Arabian oryx. Anim Conserv 2:269–278

    Article  Google Scholar 

  • McMahon BJ, Teeling EC, Höglund J (2014) How and why should we implement genomics into conservation? Evol Appl 7:999–1007

    Article  PubMed  PubMed Central  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: F ST and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Nijman IJ, Lenstra JA, Schwerin M, Olsaker I (1996) Polymorphisms and physical locations of three bovine microsatellite loci: IOBT395, IOBT528, IOBT1401. Anim Genet 27:221–222

    Article  CAS  PubMed  Google Scholar 

  • Nowak R (1999) Walker’s mammals of the world, vol II, 6th edn. The John Hopkins University Press, Baltimore

    Google Scholar 

  • O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51

    Article  Google Scholar 

  • Pagacova E, Cernohorska H, Kubickova S, Vahala J, Rubes J (2011) Centric fusion polymorphism in captive animals of family Bovidae. Conserv Genet 12:71–77

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce-Kelly P, Mace GM, Clarke MD (1995) The release of captive bred snails (Partula taeniata) into a semi-natural environment. Biodivers Conserv 4:645–663

    Article  Google Scholar 

  • Pelletier F, Reale D, Watters J, Boakes EH, Garant D (2009) Value of captive populations for quantitative genetics research. Trends Ecol Evol 24:263–270

    Article  PubMed  Google Scholar 

  • Pollak JP, Lacy RC, Ballou JD (2002) Population management 2000 v1.16. Chicago Zoological Society, Brookfield

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249

    Google Scholar 

  • Renan S, Greenbaum G, Shahar N, Templeton AR, Bouskila A, Bar-David S (2015) Stochastic modelling of shifts in allele frequencies reveals a strongly polygynous mating system in the re-introduced Asiatic wild ass. Mol Ecol 24:1433–1446

    Article  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roth TL, Bush LM, Wildt DE, Weiss RB (1999) Scimitar-horned oryx (Oryx dammah) spermatozoa are functionally competent in a heterologous bovine in vitro fertilization system after cryopreservation on dry ice, in a dry shipper, or over liquid nitrogen vapor. Biol Reprod 60:493–498

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schook MW, Wildt DE, Weiss RB, Wolfe BA, Archibald KE, Pukazhenthi BS (2013) Fundamental studies of the reproductive biology of the endangered Persian onager (Equus hemionus onager) result in first wild equid offspring from artificial insemination. Biol Reprod 89:1–13

    Article  Google Scholar 

  • Schulte-Hostedde AI, Mastromonaco GF (2015) Integrating evolution in the management of captive zoo populations. Evol Appl 8:413–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz MK, Mills LS (2005) Gene flow after inbreeding leads to higher survival in deer mice. Biol Conserv 123:413–420

    Article  Google Scholar 

  • Stanley-Price MR (1989) Animal re-introductions: the Arabian oryx in Oman. Cambridge University Press, Cambridge

    Google Scholar 

  • Stewart DRM (1963) The Arabian oryx (Oryx leucoryx Pallas). Afr J Ecol 1:103–117

    Article  Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496

    Article  PubMed  Google Scholar 

  • Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Res 8:299–301

    Article  Google Scholar 

  • Tzika AC, Remy C, Gibson R, Milinkovitch MC (2009) Molecular genetic analysis of a captive-breeding program: the vulnerable endemic Jamaican yellow boa. Conserv Genet 10:69–77

    Article  CAS  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • vonHoldt BM, Pollinger JP, Earl DA, Knowles JC, Boyko AR, Parker H, Geffen E, Pilot M, Jedrzejewski W, Jedrzejewska B, Sidorovich V, Greco C, Randi E, Musiani M, Kays K, Bustamante CD, Ostrander EA, Novembre J, Wayne RK (2011) A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res 21:1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whiteley AR, Fitzpatrick SW, Funk WC, Tallmon DA (2015) Genetic rescue to the rescue. Trends Ecol Evol 30:42–49

    Article  PubMed  Google Scholar 

  • Willoughby JR, Fernandez NB, Lamb MC, Ivy JA, Lacy RC, Dewoody JA (2015) The impacts of inbreeding, drift and selection on genetic diversity in captive breeding populations. Mol Ecol 24:98–110

    Article  CAS  PubMed  Google Scholar 

  • Wilson D, Reeder D (1993) Mammal species of the world: a taxonomic and geographic reference, 2nd edn. Smithsonian Institution Press, Washington

    Google Scholar 

  • Witzenberger KA, Hochkirch A (2011) Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species. Biodivers Conserv 20:1843–1861

    Article  Google Scholar 

  • Xia C, Cao J, Zhang H, Gao X, Yang W, Blank D (2014) Reintroduction of Przewalski’s horse (Equus ferus przewalskii) in Xinjiang, China: the status and experience. Biol Conserv 177:142–147

    Article  Google Scholar 

  • Zhou H, Li D, Zhang Y, Yang T, Liu Y (2007) Genetic diversity of microsatellite DNA loci of Tibetan antelope (Chiru, Pantholops hodgsonii) in Hoh Xil National Nature Reserve, Qinghai, China. J Genet Genomics 34:600–607

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the Arizona Center for Nature Conservation/Phoenix Zoo and by the Consejo Nacional de Ciencia y Tecnología and the National Science Foundation-Integrative Graduate Education and Research Traineeship scholarships awarded to A. Ochoa. We thank D. Subaitis and J. Swenson from the Arizona Center for Nature Conservation/Phoenix Zoo and A. H. Eljarah and A. Elhala from the Royal Society for the Conservation of Nature for collecting the Arabian oryx biological samples used in this study. R. Fitak, T. Edwards, and two anonymous reviewers provided useful comments and revisions to the manuscript. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Ochoa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 64 kb)

Supplementary material 2 (PDF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa, A., Wells, S.A., West, G. et al. Can captive populations function as sources of genetic variation for reintroductions into the wild? A case study of the Arabian oryx from the Phoenix Zoo and the Shaumari Wildlife Reserve, Jordan. Conserv Genet 17, 1145–1155 (2016). https://doi.org/10.1007/s10592-016-0850-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0850-5

Keywords

Navigation