Skip to main content

Advertisement

Log in

Geographic independence and phylogenetic diversity of red shiner introductions

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allan JD, Flecker AS (1993) Biodiversity conservation in running waters. Bioscience 43:32–43

    Article  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37

    Article  CAS  PubMed  Google Scholar 

  • Bermingham E, Avise JC (1986) Molecular zoogeography of freshwater fishes in the southeastern United States. Genetics 113:939–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bermond G, Ciose M, Lombart E, Blin A, Boriani M, Furlan L, Toepfer S (2012) Secondary contact and admixture between independently invading populations of the western corn rootworm, Diabrotica virgifera virgifera in Europe. PLoS ONE 7:e50129. doi:10.1371/journal.pone.0050129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertorelle G, Benazzo A, Mona S (2010) ABC as a flexible framework to estimate demography over space and time: some cons, many pros. Mol Ecol 19:2609–2625

    Article  CAS  PubMed  Google Scholar 

  • Blakeslee AMH, McKenzie CH, Darling JA, Byers JE, Pringle JM, Roman J (2010) A hitchhiker’s guide to the Maritimes: anthropogenic transport facilitates long-distance dispersal of an invasive marine crab to Newfoundland. Divers Distrib 16:879–891

    Article  Google Scholar 

  • Blum MJ, Jun Bando K, Katz M, Strong DR (2007) Geographic structure, genetic diversity and source tracking of Spartina alterniflora. J Biogeogr 34:2055–2069

    Article  Google Scholar 

  • Blum MJ, Neely DA, Harris PM, Mayden RL (2008) Molecular systematics of the cyprinid genus Campostoma (Actinopterygii: Cypriniformes): disassociation between morphological and mitochondrial differentiation. Copeia 2008:360–369

    Article  Google Scholar 

  • Blum MJ, Walters DM, Burkhead NM, Freeman BJ, Porter BA (2010) Reproductive isolation and the expansion of an invasive hybrid swarm. Biol Invasions 12:2825–2836

    Article  Google Scholar 

  • Broughton RE, Gold JR (2000) Phylogenetic relationships in the North American cyprinid genus Cyprinella (Actinopterygii: Cyprinidae) based on sequences of the mitochondrial ND2 and ND4L genes. Copeia 2000:1–10

    Article  Google Scholar 

  • Broughton RE, Vedala KC, Crowl TM, Ritterhouse LL (2011) Current and historical hybridization with differential introgression among three species of cyprinid fishes (Genus Cyprinella). Genetica 139:699–707

    Article  PubMed  Google Scholar 

  • Buckley LB, Waaser SA, MacLean HJ, Fox R (2011) Does including physiology improve species distribution model predictions of responses to recent climate change? Ecology 92:2214–2221

    Article  PubMed  Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    Article  CAS  PubMed  Google Scholar 

  • Casal CMV (2006) Global documentation of fish introductions: the growing crisis and recommendations for action. Biol Invasions 8:3–11

    Article  Google Scholar 

  • Chick JH, Pegg MA (2001) Invasive carp in the Mississippi River basin. Science 292:2250–2251

    Article  CAS  PubMed  Google Scholar 

  • Childs MR, Echelle AA, Dowling TE (1996) Development of the hybrid swarm between Pecos pupfish (Cyprinodontidae: Cyprinodon pecosensis) and sheepshead minnow (Cyprinodon variegatus): a perspective from allozymes and mtDNA. Evolution 50:2014–2022

    Article  Google Scholar 

  • Compton TJ, Leathwick JR, Inglis GJ (2010) Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers Distrib 16:243–255

    Article  Google Scholar 

  • Conner JV, Sutkus RD (1986) Zoogeography of freshwater fishes of the western Gulf slope. In: Hocutt CJ, Wiley EO (eds) Zoogeography of North American freshwater fishes. Wiley, New York, pp 413–456

    Google Scholar 

  • Contreras-Balderas S (1975) Zoogeography and evolution of Notropis lutrensis and Notropis ornatus in the Rio Grande basin and range, Mexico and United States (Pisces: Cyprinidae). PhD Thesis, Tulane University, New Orleans

  • Cornuet JM, Pudlo P, Veyssier J, Dehne-Garcia A, Gautier M, Leblois R, Marin JM, Estoup A (2014) DIYABC v2.0: a software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism DNA sequence and microsatellite data. Bioinformatics 30:1187–1189

    Article  CAS  Google Scholar 

  • Cross FB, Cavin LM (1971) Effects of pollution, especially from feedlots, on fishes in the upper Neosho River basin. Contribution 79, Kansas Water Resources Institute, Manhattan

  • Darling J, Blum MJ (2007) DNA-based methods for monitoring invasive species: a review and prospectus. Biol Invasions 9:751–765

    Article  Google Scholar 

  • Darling JA, Bagley MJ, Roman J, Tepolt CK, Geller JB (2008) Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol 17:4992–5007

    Article  CAS  PubMed  Google Scholar 

  • Deacon JE (1988) The endangered woundfin and water management in the Virgin River, Utah, Arizona, Nevada. Fisheries 13:18–29

    Article  Google Scholar 

  • Devivo JC, Freeman BJ (1995) Impact of introduced Cyprinella lutrensis on stream fish assemblages in Georgia. Assoc Southeastern Biologists Bull 42:129

    Google Scholar 

  • Dill WA, Cordone AJ (1997) History and status of introduced fishes in California, 1871–1996. Fish Bulletin 178. California Department of Fish and Game, Sacramento

  • Douglas ME, Marsh PC, Minckley WL (1994) Indigenous fishes of western North America and the hypothesis of competitive displacement: Meda fulgida (Cyprinidae) as a case study. Copeia 9–19

  • Echelle AA, Connor PJ (1989) Rapid geographically extensive genetic introgression after secondary contact between two pupfish species (Cyprinodon, Cyprinodontidae). Evolution 43:717–727

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estabrook GF, Smith GR, Dowling TE (2007) Body mass and temperature influence rates of mitochondrial DNA evolution in North American cyprinid fish. Evolution 61:1176–1187

    Article  CAS  PubMed  Google Scholar 

  • Estoup A, Guillemaud T (2010) Reconstructing routes of invasion using genetic data: why, how and so what? Mol Ecol 19:4113–4130

    Article  PubMed  Google Scholar 

  • Estoup A, Lombaert E, Marin JM, Guillemaud T, Pudlo P, Robert C, Cornuet JM (2012) Estimation of demo-genetic model probabilities with Approximate Bayesian Computation using linear discriminant analysis on summary statistics. Mol Ecol Resour 12:846–855

    Article  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Frankham R (2005) Invasion biology—resolving the genetic paradox in invasive species. Heredity 94:385

    Article  CAS  PubMed  Google Scholar 

  • Fuller PL, Nico LG, Wiliams JD (1999) Nonindigenous fishes introduced into inland waters of the United States. American Fisheries Society, Special Publication 27, Bethesda

  • Gido KB, Schaefer JF, Work K, Lienesch PW, Marsh-Matthews E, Matthews WJ (1999) Effects of red shiner (Cyprinella lutrensisis) on red river pupfish (Cyprinodon rubrofluviatilis). Southwest Nat 44:287–295

    Google Scholar 

  • Glotzbecker GJ, Ward JL, Walters DM, Blum MJ (2015) Turbidity alters premating social interactions between native and invasive stream fishes. Freshw Biol 60:1784–1793

    Article  Google Scholar 

  • Gozlan RE, Britton JR, Cowx I, Copp GH (2010) Current knowledge on non-native freshwater fish introductions. J Fish Biol 76:751–786

    Article  Google Scholar 

  • Greger PD, Deacon JE (1988) Food partitioning among fishes of the Virgin River. Copeia 1988:314–323

    Article  Google Scholar 

  • Guillemaud T, Beaumont MA, Ciosi M, Cornuet JM, Estoup A (2010) Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity 104:88–99

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Holden PB, Stalnaker CB (1975) Distribution and abundance of mainstream fishes of the middle and upper Colorado River basins, 1967-1973. Trans Am Fish Soc 104:217–231

    Article  Google Scholar 

  • Hollingsworth PR, Simons AM, Fordyce JA, Hulsey CD (2013) Explosive diversification following a benthic to pelagic shift in freshwater fishes. BMC Evol Biol 13:272

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubbs CL, Lagler KF (1964) Fishes of the Great Lakes region. University of Michigan Press, Michigan

    Google Scholar 

  • Hubbs C, Strawn K (1956) Infertility between two sympatric fishes, Notropis lutrensis and Notropis venustus. Evolution 10:341–344

    Article  Google Scholar 

  • Jennings MR, Saiki M (1990) Establishment of red shiner, Notropis lutrensis, in the San Joaquin Valley, California. Calif Fish Game 76:46–57

    Google Scholar 

  • Jeschke JM, Strayer DL (2006) Determinants of vertebrate invasion success in Europe and North America. Glob Change Biol 12:1608–1619

    Article  Google Scholar 

  • Johnson CE (1999) The relationship of spawning mode to conservation of North American minnows (Cyprinidae). Environ Biol Fish 55:21–30

    Article  Google Scholar 

  • Kaufman L (1992) Catastrophic change in species-rich freshwater ecosystems. Bioscience 42(11):846–858

    Article  Google Scholar 

  • Kelley AL, de Rivera CE, Buckley BA (2011) Intraspecific variation in thermotolerance and morphology of the invasive European green crab, Carcinus maenas, on the west coast of North America. J Exp Mar Biol Ecol 409:70–78

    Article  Google Scholar 

  • Knapp RA, Matthews KR (2000) Non-native fish introductions and the decline of the mountain yellow-legged frog from within protected areas. Conserv Biol 14:428–438

    Article  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Lack JB, Greene DU, Conroy CJ, Hamilton MJ, Braun JK, Mares MA, Van Den Bussche RA (2012) Invasion facilitates hybridization with introgression in the Rattus rattus species complex. Mol Ecol 21:3545–3561

    Article  PubMed  Google Scholar 

  • Larimore RW, Bayley PB (1996) The fishes of Champaign County, Illinois, during a century of alterations of a prairie ecosystem. Bull Ill Nat Hist Surv 35:53–183

    Google Scholar 

  • Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391

    Article  Google Scholar 

  • Leprieur F, Hickey MA, Arbuckle CJ, Closs GP, Brosse S, Townsend CR (2006) Hydrological disturbance benefits a native fish at the expense of an exotic fish. J Appl Ecol 43:930–939

    Article  Google Scholar 

  • Lever C (1996) Naturalized fish of the world. Academic Press, San Diego

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Marsh-Matthews E, Matthews WJ (2000) Spatial variation in relative abundance of a widespread, numerically dominant fish species and its effect on fish assemblage structure. Oecologia 125:283–292

    Article  CAS  PubMed  Google Scholar 

  • Matthews WJ (1985) Distribution of midwestern fishes on multivariate environmental gradients, with emphasis on Notropis lutrensis. Am Midl Nat 113:225–237

    Article  Google Scholar 

  • Matthews WJ (1987) Geographic variation in Cyprinella lutrensis (Pisces: Cyprinidae) in the United States, with notes on Cyprinella lepida. Copeia 1987:616–637

    Article  Google Scholar 

  • Matthews WJ, Hill LG (1977) Tolerance of the red shiner, Notropis lutrensis (Cyprinidae) to environmental parameters. Southwest Nat 22:89–98

    Article  Google Scholar 

  • Matthews WJ, Hill LG (1979) Influence of physico-chemical factors on habitat selection by red shiners, Notropis lutrensis (Pisces: Cyprinidae). Copeia 1979:70–81

    Article  Google Scholar 

  • Mayden RL (1989) Phylogenetic studies of North American minnows, with emphasis on the genus Cyprinella (Teleostei: Cypriniformes). Misc Publ Univ Kans Mus Nat Hist 80:1–189

    Google Scholar 

  • McDonald DB, Parchman TL, Bower MR, Hubert WA, Rahel FJ (2008) An introduced and a native vertebrate hybridize to form a genetic bridge to a second native species. Proc Natl Acad Sci USA 105:10837–10842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minckley WL (1973) Fishes of Arizona. Arizona Game and Fish Department, Tempe

    Google Scholar 

  • Minckley WL, Deacon JE (1968) Southwestern fishes and the enigma of “endangered species”. Science 159:1424–1432

    Article  CAS  PubMed  Google Scholar 

  • Moyle PB (1976) Fish introductions in California: history and impact on native fishes. Biol Conserv 9:101–118

    Article  Google Scholar 

  • Moyle PB (2002) Inland fishes of California. University of California Press, Berkeley

    Google Scholar 

  • Moyle PB, Leidy RA (1992) Loss of biodiversity in aquatic ecosystems: evidence from fish faunas. In: Fiedler PL, Jain SK (eds) Conservation biology: the theory and practice of nature conservation preservation and management. Chapman and Hall, New York, pp 127–169

    Chapter  Google Scholar 

  • Moyle PB, Light T (1996) Fish invasions in California: do abiotic factors determine success? Ecology 77:1666–1670

    Article  Google Scholar 

  • Muirhead JR, Gray DK, Kelly DW, Ellis SM, Heath D, Macisaac H (2008) Identifying the source of species invasions: sampling intensity vs. genetic diversity. Mol Ecol 17:1020–1035

    Article  CAS  PubMed  Google Scholar 

  • Nico L, Fuller P, Neilson M (2015) Cyprinella lutrensis. USGS Nonindigenous Aquatic Species Database, Gainesville, FL. http://nas.er.usgs.gov/queries/factsheet.aspx?SpeciesID=518. Revision 27 Jan 2012

  • Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD (2004) Ecological and evolutionary consequences of biotic homogenization. Trends Ecol Evol 19:18–24

    Article  PubMed  Google Scholar 

  • Osborne MJ, Diver TA, Hoagstrom CW, Turner TF (2015) Biogeography of ‘Cyprinella lutrensis’: intensive genetic sampling from the Pecos River ‘melting pot’ reveals a dynamic history and phylogenetic complexity. Biol J Linn Soc. doi:10.1111/bij.12664

    Google Scholar 

  • Page LM, Smith RL (1970) Recent range adjustments and hybridization of Notropis lutrensis and Notropis spilopterus in Illinois. Trans Ill State Acad Sci 63:264–272

    Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Pflieger WL (1997) The fishes of Missouri. Missouri Department of Conservation, Jefferson City

    Google Scholar 

  • Poulos HM, Chernoff B (2014) Potential range expansion of the invasive red shiner, Cyprinella lutrensis (Teleostei: Cyprinidae), under future climatic change. Open J Ecol 4:554–564

    Article  Google Scholar 

  • Poulos HM, Chernoff B, Fuller PL, Butman D (2012) Mapping the potential distribution of the invasive red shiner, Cyprinella lutrensis (Teleostei: Cyprinidae) across waterways of the conterminous United States. Aquat Invasions 7:377–385

    Article  Google Scholar 

  • Purcell KM, Stockwell CA (2015) An evaluation of the genetic structure and post-introduction dispersal of a non-native invasive fish to the North Island of New Zealand. Biol Invasions 17:625–636

    Article  Google Scholar 

  • Purcell KM, Ling N, Stockwell CA (2012) Evaluation of the introduction history and genetic diversity of a serially introduced fish population in New Zealand. Biol Invasions 14:2057–2065

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richardson LR, Gold JR (1995) Evolution of the Cyprinella lutrensis species-complex. III. Geographic variation in mitochondrial DNA of the red shiner (Cyprinella lutrensis)—influence of Pleistocene glaciation on population dispersal and divergence. Mol Ecol 4:163–171

    Article  Google Scholar 

  • Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc Lond B Biol 273:2453–2459

    Article  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rosenfield JA, Nolasco S, Lindauer S, Sandoval C, Kodric-Brown A (2004) The role of hybrid vigor in the replacement of Pecos pupfish by its hybrids with sheepshead minnow. Conserv Biol 18:1589–1598

    Article  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA et al (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJE, Berlow E, Bloomfield J, Dirzo R et al (2000) Biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Schliep KP (2011) phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593

    Article  CAS  PubMed  Google Scholar 

  • Schmidt TR, Bielawski JP, Gold JR (1998) Morphological phylogenetics and evolution of the cytochrome b gene in the cyprinid genus Lythrurus (Actinopterygii: Cypriniformes). Copeia 1998:14–22

    Article  Google Scholar 

  • Schönhuth S, Mayden RL (2010) Phylogenetic relationships in the genus Cyprinella (Actinopterygii: Cyprinidae) based on mitochondrial and nuclear sequences. Mol Phylogenet Evol 55:77–98

    Article  PubMed  Google Scholar 

  • Schönhuth S, Doadrio IG, Mayden RL (2006) A biogeographic perspective on the phylogeny of Mexican cyprinids (Actinopterygii, Cyprinidae). Studies of North American Desert Fishes in Honor of EP (Phil) Pister, conservationist. Universidad Autónoma de Nuevo León, México, pp 102–124

  • Schönhuth S, Doadrio I, Domínguez-Domínguez O, Hillis DM, Mayden RL (2008) Molecular evolution of southern North American Cyprinidae (Actynopterygii), with the description of the new genus Tampichthys from central Mexico. Mol Phylogenet Evol 47:729–756

    Article  PubMed  CAS  Google Scholar 

  • Schönhuth S, Blum MJ, Lozano-Vilano L, Neely DA, Varela-Romero A, Espinosa H, Perdices A, Mayden RL (2011) Interbasin exchange and repeated headwater capture across the Sierra Madre Occidental inferred from the phylogeography of Mexican stonerollers. J Biogeogr 38:1406–1421

    Article  Google Scholar 

  • Simon A, Britton R, Gozlan R, Van Oosterhout C, Volckaert FA, Hänfling B (2011) Invasive cyprinid fish in Europe originate from the single introduction of an admixed source population followed by a complex pattern of spread. PLoS ONE 6:e18560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GR, Dowling TE (2008) Correlating hydrographic events and divergence times of speckled dace (Rhinichthys: Teleostei: Cyprinidae) in the Colorado River drainage. In: Reheis MC, Hershler R, Miller DM (eds) Late Cenozoic drainage history of the Southwestern Great Basin and Lower Colorado River region: geologic and biotic perspectives. Special Paper 430, Geological Society of America, Boulder, pp 301–317

  • Soltis DE, Morris AB, McLachlan JS, Manos PS, Soltis PS (2006) Comparative phylogeography of unglaciated eastern North America. Mol Ecol 15:4261–4293

    Article  PubMed  Google Scholar 

  • Tepolt CK, Darling JA, Bagley MJ, Geller JB, Blum MJ, Grosholz ED (2009) European green crabs (Carcinus maenas) in the northeastern Pacific: genetic evidence for high population connectivity and current-mediated expansion from a single introduced source population. Divers Distrib 15:997–1009

    Article  Google Scholar 

  • Townsend CR, Crowl TA (1991) Fragmented population structure in a native New Zealand fish: an effect of introduced brown trout? Oikos 1991:347–354

    Article  Google Scholar 

  • U.S. Fish and Wildlife Service (1990) Spikedace recovery plan. U.S. Fish and Wildlife Service, Albuquerque

    Google Scholar 

  • U.S. Fish and Wildlife Service (1995) Greenback cutthroat trout recovery plan. U.S. Fish and Wildlife Service, Denver

    Google Scholar 

  • Wallace RK, Ramsey JS (1982) A new cyprinid hybrid, Notropis lutrensis and N. callitaenia, from the Apalachicola drainage in Alabama. Copeia 1982:214–217

    Article  Google Scholar 

  • Walters DM, Blum MJ, Rashleigh B, Freeman BJ, Porter BA, Burkhead NM (2008) Red shiner invasion and hybridization with blacktail shiner in the upper Coosa River, USA. Biol Invasions 10:1229–1242

    Article  Google Scholar 

  • Ward JL, Blum MJ, Walters DM, Porter BA, Burkhead N, Freeman B (2012) Discordant introgression in a rapidly expanding hybrid swarm. Evol Appl 5:380–392

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson EO (1992) The diversity of life. Belknap Press, Cambridge

    Google Scholar 

  • Witte F, Goldschmidt T, Wanink J, Van Oijen M, Goudswaard K, Witte-Maas E, Bouton N (1992) The destruction of an endemic species flock: quantitative data on the decline of the haplochromine cichlids of Lake Victoria. Environ Biol Fish 34:1–28

    Article  Google Scholar 

  • Yu SL, Peters EJ (2002) Diet and seasonal habitat use by red shiner (Cyprinella lutrensis). Zool Stud 41:229–235

    Google Scholar 

Download references

Acknowledgments

We would like to thank Jessica Ward, Travis Haas, Roderick Gagne, David Walters, and Brandon Policky for assisting with field collections. We would also like to thank Matthew Dekar, Jesse Fischer, Mark Pegg, Brady Porter, Doug Carney, Randy Sauer, and Matt Dugas for providing samples. Additionally, we thank Keith Gido and Peter Moyle for their assistance with securing specimens. We also thank Sabrina Hunter for laboratory assistance. Lastly, thanks to Pam Fuller and Matthew Cannister for providing assistance with USGS database records and GIS maps.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Glotzbecker.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2088 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glotzbecker, G.J., Alda, F., Broughton, R.E. et al. Geographic independence and phylogenetic diversity of red shiner introductions. Conserv Genet 17, 795–809 (2016). https://doi.org/10.1007/s10592-016-0822-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0822-9

Keywords

Navigation