Skip to main content

Advertisement

Log in

Genetic diversity is maintained in the endangered New Zealand long-tailed bat (Chalinolobus tuberculatus) despite a closed social structure and regular population crashes

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Maintaining the genetic diversity of populations is important in conservation because it strongly influences the ability to adapt to changing environments. We characterised the genetic structure of the endemic and endangered New Zealand (NZ) long-tailed bat (Chalinolobus tuberculatus) in two valleys in Fiordland, NZ. Fiordland is one of the last strongholds of the species, which has drastically declined throughout NZ. C. tuberculatus has suffered from recent habitat fragmentation and episodic predation by exotic mammals over the last 150 years. Gene flow and structuring were measured using nine nuclear microsatellite loci. In addition, the hyper-variable domain HVI of the mitochondrial control region was sequenced to analyse population structure at the maternal level. Our results show that the nine colonies studied have retained high genetic diversity, with moderate signs of genetic bottlenecks. Furthermore, low F ST and F IS values indicated that all colonies are still connected by gene flow and do not show signs of inbreeding. Substantial gene flow among colonies was also demonstrated by Bayesian clustering and PCA analysis. At the mitochondrial level, substantial differentiation between colonies has resulted from strong natal philopatry in females. Overall, our results indicate that genetic diversity is maintained in the Fiordland population of C. tuberculatus despite regular population crashes and habitat fragmentation. Management should ensure that remaining habitat linkages are preserved and further predator-induced population bottlenecks are prevented so that current genetic diversity is maintained in the long-term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detec molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323

    Article  CAS  Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  • Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

    PubMed  PubMed Central  CAS  Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc B 263:1619–1626

    Article  Google Scholar 

  • Brooks SP, Gelman A (1998) General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Google Scholar 

  • Burland TM, Worthington Wilmer J (2001) Seeing in the dark: molecular approaches to the study of bat populations. Biol Rev 76:389–409

    Article  PubMed  CAS  Google Scholar 

  • Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Mol Ecol 16:2450–2462

    Article  PubMed  CAS  Google Scholar 

  • Castella V, Ruedi M, Excoffier L (2001) Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. J Evol Biol 14:708–720

    Article  Google Scholar 

  • Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244

    Article  Google Scholar 

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol 15:2833–2843

    Article  PubMed  Google Scholar 

  • Corander J, Marttinen P, Sirén J, Tang J (2008) Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform 9:539

    Article  CAS  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford NG (2010) SMOGD: software of the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  PubMed  Google Scholar 

  • Dekrout A, Cursons RT, Wilkins RJ (2009) Microsatellite markers for the endemic New Zealand long-tailed bat (Chalinolobus tuberculatus). Mol Ecol Resour 9:616–618

    Article  PubMed  CAS  Google Scholar 

  • Dilks P, Willans M, Pryde M, Fraser I (2003) Large scale stoat control to protect mohua (Mohoua ochrocephala) and kaka (Nestor meridionalis) in the Eglinton Valley, Fiordland, New Zealand. N Z J Ecol 27:1–9

    Google Scholar 

  • Dool SE, Puechmaille SJ, Dietz C, Juste J, Ibáñez C, Hulva P, Roué S, Petit EJ, Jones G, Russo D, Toffoli R, Viglino A, Martinoli A, Rossiter SJ, Teeling EC (2013) Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Mol Ecol 22:4055–4070

    Article  PubMed  CAS  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  PubMed Central  CAS  Google Scholar 

  • Frankham R, Ballou J, Briscoe D (2002) Introduction to conservation genetics. Cambridge University Press, New York

    Book  Google Scholar 

  • Furmankiewicz J, Altringham J (2007) Genetic structure in a swarming brown long-eared bat (Plecotus auritus) population: evidence for mating at swarming sites. Conserv Genet 8:913–923

    Article  CAS  Google Scholar 

  • Girod C, Vitalis R, Leblois R, Fréville H (2011) Inferring population decline and expansion from microsatellite data: a simulation-based evaluation of the Msvar method. Genetics 188:165–179

    Article  PubMed  PubMed Central  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices Version 2.9.3. Available from www.unil.ch/izea/softwares/fstat.html

  • Goudet J, Raymond M, de Meeüs T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson J (2005) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hildner KK, Soule ME, Min M-S, Foran DR (2003) The relationship between genetic variability and growth rate among populations of the pocket gopher, Thomomys bottae. Conserv Genet 4:233–240

    Article  CAS  Google Scholar 

  • Hua P, Zhang L, Guo T, Flanders J, Zhang S (2013) Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats. PLoS One:8

  • Hyndman RJ, Einbeck J, Wand M (2013) Package ‘hdrcde’. R Package version, 3.1

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Jamieson IG (2009) Loss of genetic diversity and inbreeding in New Zealand’s threatened bird species. Sci Conserv 293:59

    Google Scholar 

  • Jamieson IG (2015) Significance of population genetics for managing small natural and reintroduced populations in New Zealand. N Z J Ecol 39:1–18

    Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kerth G, Petit E (2005) Colonization and dispersal in a social species, the Bechstein’s bat (Myotis bechsteinii). Mol Ecol 14:3943–3950

    Article  PubMed  Google Scholar 

  • Kerth G, Van Schaik J (2012) Causes and consequences of living in closed societies: lessons from a long-term socio-genetic study on Bechstein’s bats. Mol Ecol 21:633–646

    Article  PubMed  CAS  Google Scholar 

  • Kerth G, Mayer F, König B (2000) MtDNA reveals that female Bechstein’s bats live in closed societies. Mol Ecol 9:793–800

    Article  PubMed  CAS  Google Scholar 

  • Kerth G, Mayer F, Petit E (2002) Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol Ecol 11:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Loader C (1999) Local regression and likelihood, vol 47. Springer, New York

    Google Scholar 

  • Matthiopoulos J, Harwood J, Thomas L (2005) Metapopulation consequences of site fidelity in colonially breeding mammals and birds. J Anim Ecol 74:716–727

    Article  Google Scholar 

  • McGlone MS (1989) The Polynesian settlement of New Zealand in relation to environmental and biotic changes. N Z J Ecol 12:115–129

    Google Scholar 

  • Meńdez M, Tella JL, Godoy JA (2011) Restricted gene flow and genetic drift in recently fragmented populations of an endangered steppe bird. Biol Conserv 144:2615–2622

    Article  Google Scholar 

  • Meyer CFJ, Kalko EKV, Kerth G (2009) Small-scale fragmentation effects on local genetic diversity in two phyllostomid bats with different dispersal abilities in Panama. Biotropica 41:95–102

    Article  Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucl Acid Res 16:1215

    Article  CAS  Google Scholar 

  • Nevo E, Beiles A, Ben-Shlomo R (1984) The evolutionary significance of genetic diversity: ecological, demographic and life-history correlates. In: Mani GS (ed) Evolutionary dynamics of genetic diversity. Springer, Heidelberg, pp 13–295

    Chapter  Google Scholar 

  • O’Donnell CFJ (1996) Predators and the decline of New Zealand forest birds: an introduction to the hole-nesting bird and predator programme. N Z J Zool 23:213–219

    Article  Google Scholar 

  • O’Donnell CFJ (2000a) Cryptic local populations in a temperate rainforest bat Chalinolobus tuberculatus in New Zealand. Anim Conserv 3:287–297

    Article  Google Scholar 

  • O’Donnell CFJ (2000b) Conservation status and causes of decline of the threatened New Zealand Long-tailed Bat Chalinolobus tuberculatus (Chiroptera: Vespertilionidae). Mammal Rev 30:89–106

    Article  Google Scholar 

  • O’Donnell CFJ (2001) Home range and use of space by Chalinolobus tuberculatus, a temperate rainforest bat from New Zealand. J Zool 253:253–264

    Article  Google Scholar 

  • O’Donnell CFJ (2002a) Timing of breeding, productivity and survival of long-tailed bats Chalinolobus tuberculatus (Chiroptera: Vespertilionidae) in cold-temperate rainforest in New Zealand. J Zool 257:311–323

    Article  Google Scholar 

  • O’Donnell CFJ (2002b) Variability in numbers of long-tailed bats (Chalinolobus tuberculatus) roosting in Grand Canyon Cave, New Zealand: implications for monitoring population trends. N Z J Zool 29:273–284

    Article  Google Scholar 

  • O’Donnell CFJ (2002c) Influence of sex and reproductive status on nocturnal activity and night roosting by the New Zealand long-tailed bat Chalinolobus tuberculatus. J Mammal 83:794–803

    Article  Google Scholar 

  • O’Donnell CFJ (2009) Population dynamics and survivorship in bats. In: Kunz TH, Parsons S (eds) Ecological and behavioral methods for the study of bats. Johns Hopkins University Press, Baltimore, pp 158–176

    Google Scholar 

  • O’Donnell CFJ, Sedgeley JA (1999) Use of roosts by the long-tailed bat, Chalinolobus tuberculatus, in temperate rainforest in New Zealand. J Mammal 80:913–923

    Article  Google Scholar 

  • O’Donnell CFJ, Sedgeley JA (2006) Causes and consequences of tree-cavity roosting in a temperate bat, Chalinolobus tuberculatus, from New Zealand. Functional and evolutionary ecology of bats. Oxford University Press, New York, pp 308–328

    Google Scholar 

  • O’Donnell CFJ, Christie JE, Simpson W (2006) Habitat use and nocturnal activity of lesser short-tailed bats (Mystacina tuberculata) in comparison with long-tailed bats (Chalinolobus tuberculatus) in temperate rainforest. N Z J Zool 33:113–124

    Article  Google Scholar 

  • O’Donnell CFJ, Christie JE, Hitchmough RA, Lloyd B, Parsons S (2010) The conservation status of New Zealand bats, 2009. N Z J Zool 37:297–311

    Article  Google Scholar 

  • Patriquin KJ, Leonard ML, Broders HG, Garroway CJ (2010) Do social networks of female northern long-eared bats vary with reproductive period and age? Behav Ecol Sociobiol 64:899–913

    Article  Google Scholar 

  • Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S, Vásquez-Carrillo C, Pauli JN, Palsbøll PJ (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    Article  PubMed  Google Scholar 

  • Petit E, Balloux F, Goudet J (2001) Sex-biased dispersal in a migratory bat: a characterization using sex-specific demographic parameters. Evolution 55:635–640

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6:7–11

    Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pryde MA, O’Donnell C, Barker RJ (2005) Factors influencing survival and long-term population viability of New Zealand long-tailed bats (Chalinolobus tuberculatus): implications for conservation. Biol Cons 126:175–185

    Article  Google Scholar 

  • Puechmaille S, Ar Gouilh M, Piyapan P, Yokubol Mie Mie M, Bates PJ, Satasook C, New T, Bu SSH, Mackie IJ, Petit EJ, Teeling EC (2011) The evolution of sensory divergence in the context of limited gene flow in the bumblebee bat. Nat Commun 2:1–9

    Article  CAS  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Richardson SJ, Allen RB, Whitehead D, Carswell FE, Ruscoe WA, Platt KH (2005) Climate and net carbon availability determine temporal patterns of seed production by Nothofagus. Ecology 86:972–981

    Article  Google Scholar 

  • Rivers NM, Butlin RK, Altringham JD (2005) Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Mol Ecol 14:4299–4312

    Article  PubMed  CAS  Google Scholar 

  • Rivers NM, Butlin RK, Altringham JD (2006) Autumn swarming behaviour of Natterer’s bats in the UK: population size, catchment area and dispersal. Biol Cons 127:215–226

    Article  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Ross KG (2001) Molecular ecology of social behaviour: analyses of breeding systems and genetic structure. Mol Ecol 10:265–284

    Article  PubMed  CAS  Google Scholar 

  • Rossiter SJ, Jones G, Ransome RD, Barratt EM (2000) Genetic variation and population strucuture in the endangered greater horseshoe bat Rhinolophus ferrumequinum. Mol Ecol 9:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Schauber EM, Kelly D, Turchin P, Simon C, Lee WG, Allen RB, Payton IJ, Wilson PR, Cowan PE, Brockie RE (2002) Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83:1214–1225

    Article  Google Scholar 

  • Sedgeley JA, O’Donnell C (1999a) Roost selection by the long-tailed bat, Chalinolobus tuberculatus, in temperate New Zealand rainforest and its implications for the conservation of bats in managed forests. Biol Conserv 88:261–276

    Article  Google Scholar 

  • Sedgeley JA, O’Donnell C (1999b) Use of roosts by the long-tailed bat, Chalinolobus tuberculatus, in temperate rainforest in New Zealand. J Mammal 80:913–923

    Article  Google Scholar 

  • Soulé ME (ed) (1986) Conservation biology. The science of scarcity and diversity. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Storz JF (1999) Genetic consequences of mammalian social structure. J Mammal 80:553–569

    Article  Google Scholar 

  • Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56:154–166

    Article  PubMed  CAS  Google Scholar 

  • Trewick SA, Wallis GP (2001) Bridging the“beech gap“: New Zealand invertebrate phylogeography implicates Pleistocence glaciation and Pliocene isolation. Evolution 55:2170–2180

    PubMed  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Wilkinson GS, Chapman A (1991) Length and sequence variation in evening bat D-loop mtDNA. Genetics 128:607–617

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wilkinson GS, Mayer F, Kerth G, Petri B (1997) Evolution of repeated sequence arrays in the D-loop region of bat mtDNA. Genetics 146:1035–1048

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wittemyer G, Okello JBA et al (2009) Where sociality and relatedness diverge: the genetic basis for hierarchical social organization in African elephants. Proc R Soc B 276:3513–3521

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Thank you to Will Batson, Iris Broekema, Jo Carpenter, Emilie Chavel, Petrina Duncan, Nicola Fullerton, Sarah King, Jono More, Dan Palmer, Jason and Maddie Van de Wetering and Emma Williams for assisting with collecting tissue samples in the field, Hannah Edmonds and Warren Simpson for discovering the Iris Burn colony and enabling us to sample at the site, Ina Roemer, Alain Frantz, and Sebastien Puechmaille for their help with genetic analyses, and Richard Earl for drawing Fig. 1. We also thank two anonymous referees for their helpful comments on the manuscript. This study formed part of the Department of Conservation Science Investigation 4230 and tissue sampling was conducted under DOC Animal Ethics Committee permits AEC 220 and AEC 234.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin F. J. O’ Donnell or Gerald Kerth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 970 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’ Donnell, C.F.J., Richter, S., Dool, S. et al. Genetic diversity is maintained in the endangered New Zealand long-tailed bat (Chalinolobus tuberculatus) despite a closed social structure and regular population crashes. Conserv Genet 17, 91–102 (2016). https://doi.org/10.1007/s10592-015-0763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0763-8

Keywords

Navigation