Skip to main content

Advertisement

Log in

Dispersal constraints for the conservation of the grassland herb Thymus pulegioides L. in a highly fragmented agricultural landscape

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Species-rich grassland communities are one of the most important habitats for biodiversity and of high conservation priority in Europe. Restoration actions are mainly focused on the improvement of abiotic conditions, such as nutrient depletion techniques, and are generally based on the assumption that the target community will re-establish at the restored site when the target species exist in the neighborhood. Information on the contemporary seed-dispersal range is therefore crucial to develop effective conservation measures. Here, we investigated the contemporary long-distance seed dispersal and genetic structure of the grassland herb Thymus pulegioides in an intensively managed agricultural landscape in Flanders (Northern Belgium). Assignment tests based on amplified fragment length polymorphisms revealed very low levels of effective seed dispersal between populations although seed availability and seed viability was not a limiting factor. The process of fragmentation has resulted in a high population differentiation and without further incoming gene flow the remnant populations are prone to further genetic erosion and perhaps extinction. Our findings illustrate that restoring suitable abiotic habitat conditions in the neighborhood of existing populations does likely not guarantee colonization for this grassland specialist. For the survival of the species, existing populations should be functionally connected and seed addition may be necessary for successful conservation to overcome dispersal-limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aavik T, Holderegger R, Edwards PJ, Billeter R (2013) Patterns of contemporary gene flow suggest low functional connectivity of grasslands in a fragmented agricultural landscape. J Appl Ecol 50:395–403. doi:10.1111/1365-2664.12053

    Article  Google Scholar 

  • Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J (2008) Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol Ecol 17:5177–5188

    Article  PubMed  Google Scholar 

  • Albaladejo RG, Carrillo LF, Aparicio A, Fernandez-Manjarres JF, Gonzalez-Varo JP (2009) Population genetic structure in Myrtus communis L. in a chronically fragmented landscape in the Mediterranean: can gene flow counteract habitat perturbation? Plant Biol 11:442–453

    Article  CAS  PubMed  Google Scholar 

  • Arrigo N, Tuszynski JW, Ehrich D, Gerdes T, Alvarez N (2009) Evaluating the impact of scoring parameters on the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinform 10:33

    Article  Google Scholar 

  • Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C (2013) Individual dispersal, landscape connectivity and ecological networks. Biol Rev 88:310–326. doi:10.1111/brv.12000

    Article  PubMed  Google Scholar 

  • Bakker JP, Berendse F (1999) Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends Ecol Evol 14:63–68

    Article  PubMed  Google Scholar 

  • Bakker E, van Dam BC (1999) Vaderschapsanalyse bij eik: eikenstuifmeel komt van ver Nederlands Bosbouw Tijdschrift Nederlands Bosbouw Tijdschrift 71(1):35–38

    Google Scholar 

  • Becker T, Voss N, Durka W (2011) Pollen limitation and inbreeding depression in an ‘old rare’ bumblebee-pollinated grassland herb. Plant Biol 13:857–864. doi:10.1111/j.1438-8677.2011.00452.x

    Article  CAS  PubMed  Google Scholar 

  • Belhassen E, Dockes AC, Gliddon C, Gouyon PH (1987) Gene dispersal and neighborhood in a gynodioecious species—the case of Thymus vulgaris L. Genet Sel Evol 19:307–320. doi:10.1051/gse:19870304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25:60–83. doi:10.2307/1165312

    Article  Google Scholar 

  • Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5:117–129. doi:10.1111/j.1752-4571.2011.00214.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bolker BM, Pacala SW (1999) Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am Nat 153:575–602. doi:10.1086/303199

    Article  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidessen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Bonte D, Dekoninck W, Provoost S, Cosijns E, Hoffmann M (2003) Microgeographical distribution of ants (Hymenoptera: Formicidae) in coastal dune grassland and their relation to the soil structure and vegetation. Animal Biol 53:367–377. doi:10.1163/157075603322556274

    Article  Google Scholar 

  • Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68. doi:10.1016/S0304-3800(01)00501-4

    Article  Google Scholar 

  • Bossuyt B, Honnay O (2008) Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities J Veg Sci 19:875–884. doi:10.3170/2008-8-18462

    Google Scholar 

  • Bullock JM, Shea K, Skarpaas O (2006) Measuring plant dispersal: an introduction to field methods and experimental design. Plant Ecol 186:217–234. doi:10.1007/s11258-006-9124-5

    Article  Google Scholar 

  • Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12:1979–1991

    Article  CAS  PubMed  Google Scholar 

  • Cosyns E, Delporte A, Lens L, Hoffmann M (2005) Germination success of temperate grassland species after passage through ungulate and rabbit guts. J Ecol 93:353–361. doi:10.1111/j.1365-2745.2005.00982.x

    Article  Google Scholar 

  • Cousins SAO, Eriksson O (2001) Plant species occurrences in a rural hemiboreal landscape: effects of remnant habitats, site history, topography and soil. Ecography 24:461–469. doi:10.1034/j.1600-0587.2001.d01-202.x

    Article  Google Scholar 

  • Dasmahapatra KK, Lacy RC, Amos W (2008) Estimating levels of inbreeding using AFLP markers. Heredity 100:286–295

    Article  CAS  PubMed  Google Scholar 

  • Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383

    Article  CAS  Google Scholar 

  • Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  • Eriksson A (1998) Regional distribution of Thymus serpyllum: management history and dispersal limitation. Ecography 21:35–43. doi:10.1111/j.1600-0587.1998.tb00392.x

    Article  Google Scholar 

  • Fischer SF, Poschlod P, Beinlich B (1996) Experimental studies on the dispersal of plants and animals on sheep in calcareous grasslands. J Appl Ecol 33:1206–1222. doi:10.2307/2404699

    Article  Google Scholar 

  • He TH, Krauss SL, Lamont BB, Miller BP, Enright NJ (2004) Long-distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data. Mol Ecol 13:1099–1109

    Article  CAS  PubMed  Google Scholar 

  • Helsen K, Hermy M, Honnay O (2013) Spatial isolation slows down directional plant functional group assembly in restored semi-natural grasslands. J Appl Ecol 50:404–413. doi:10.1111/1365-2664.12037

    Article  Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Hooftman DAP, Billeter RC, Schmid B, Diemer M (2004) Genetic effects of habitat fragmentation on common species of Swiss fen meadows. Conserv Biol 18:1043–1051

    Article  Google Scholar 

  • Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  • Jacquemyn H, Roldan-Ruiz I, Honnay O (2010) Evidence for demographic bottlenecks and limited gene flow leading to low genetic diversity in a rare thistle. Conserv Genet 11:1979–1987. doi:10.1007/s10592-010-0089-5

    Article  Google Scholar 

  • Javadi H, Hejazi SMH, Babayev MS (2009) Karyotypic Studies of three Thymus (Lamiaceae) species and populations in Iran. Caryologia 62:316–325

    Google Scholar 

  • Kamm U, Rotach P, Gugerli F, Siroky M, Edwards P, Holderegger R (2009) Frequent long-distance gene flow in a rare temperate forest tree (Sorbus domestica) at the landscape scale. Heredity 103:476–482. doi:10.1038/hdy.2009.70

    Article  CAS  PubMed  Google Scholar 

  • Luquet E et al (2012) Genetic erosion in wild populations makes resistance to a pathogen more costly. Evolution 66:1942–1952. doi:10.1111/j.1558-5646.2011.01570.x

    Article  PubMed  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794. doi:10.1111/j.1471-8286.2004.00770.x

    Article  Google Scholar 

  • Murphy HT, Lovett-Doust J (2004) Context and connectivity in plant metapopulations and landscape mosaics: does the matrix matter? Oikos 105:3–14. doi:10.1111/j.0030-1299.2004.12754.x

    Article  Google Scholar 

  • Nathan R, Perry G, Cronin JT, Strand AE, Cain ML (2003) Methods for estimating long-distance dispersal Oikos 103:261–273. doi:10.1034/j.1600-0706.2003.12146.x

    Google Scholar 

  • Oostermeijer JGB, Luijten SH, den Nijs JCM (2003) Integrating demographic and genetic approaches in plant conservation. Biol Conserv 113:389–398. doi:10.1016/s0006-3207(03)00127-7

    Article  Google Scholar 

  • Ouborg NJ, Vergeer P, Mix C (2006) The rough edges of the conservation genetics paradigm for plants. J Ecol 94:1233–1248. doi:10.1111/j.1365-2745.2006.01167.x

    Article  Google Scholar 

  • Pasquet RS et al (2008) Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances. Proc Natl Acad Sci USA 105:13456–13461

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288–295

    Article  Google Scholar 

  • Pigott CD (1955) Thymus L. J Ecol 43:365–387

    Article  Google Scholar 

  • Pigott CD, Walters SM (1954) On the interpretation of the discontinuous distributions shown by certain British species of open habitats. J Ecol 42:95–116

    Article  Google Scholar 

  • Poschlod P, Kiefer S, Traenkle U, Fischer S, Bonn S (1998) Plant species richness in calcareous grasslands as affected by dispersability in space and time. Appl Veg Sci 1:75–91. doi:10.2307/1479087

    Article  Google Scholar 

  • Pywell RF, Bullock JM, Hopkins A, Walker KJ, Sparks TH, Burke MJW, Peel S (2002) Restoration of species-rich grassland on arable land: assessing the limiting processes using a multi-site experiment. J Appl Ecol 39:294–309. doi:10.1046/j.1365-2664.2002.00718.x

    Article  Google Scholar 

  • Rico Y, Boehmer HJ, Wagner HH (2012) Determinants of actual functional connectivity for calcareous grassland communities linked by rotational sheep grazing. Landsc Ecol 27:199–209. doi:10.1007/s10980-011-9648-5

    Article  Google Scholar 

  • Rico Y, Holderegger R, Boehmer HJ, Wagner HH (2014) Directed dispersal by rotational shepherding supports landscape genetic connectivity in a calcareous grassland plant. Mol Ecol 23:832–842. doi:10.1111/mec.12639

    Article  PubMed  Google Scholar 

  • Roesti M, Salzburger W, Berner D (2012) Uninformative polymorphisms bias genome scans for signatures of selection. BMC Evol Biol 12:94. doi:10.1186/1471-2148-12-94

    Article  PubMed Central  PubMed  Google Scholar 

  • Schonswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732

    Article  Google Scholar 

  • Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514. doi:10.1111/j.136-294X.2010.04691.x

    Article  PubMed  Google Scholar 

  • Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24:1461–1462. doi:10.1093/bioinformatics/btn209

    Article  CAS  PubMed  Google Scholar 

  • Tarayre M, Saumitou-Laprade P, Cuguen J, Couvet D, Thompson JD (1997) The spatial genetic structure of cytoplasmic (cpDNA) and nuclear (allozyme) markers within and among populations of the gynodioecious Thymus vulgaris (Labiatae) in southern France. Am J Bot 84:1675–1684. doi:10.2307/2446465

    Article  CAS  PubMed  Google Scholar 

  • Thompson K, Bakker JP, Bekker RM (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge Unicersity Press, Cambridge

    Google Scholar 

  • Van Landuyt W, Hoste I, Vanhecke L, Van den Bremt P, Vercruysse E, De Beer D (2006) Atlas van de Flora van Vlaanderen en het Brussels Gewest. Instituut voor natuur- en bosonderzoek, Nationale Plantentuin van België & FloW.er, Brussel

    Google Scholar 

  • Vanden Broeck A et al (2014) High levels of effective long-distance dispersal may blur ecotypic divergence in a rare terrestrial orchid. BMC Ecology 14:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Veen P, Jefferson R, de Smidt J, van der Straaten J (2009) Grasslands in Europe of high nature value. KNNV Publishing, Zeist

    Google Scholar 

  • Vekemans X, Beauwens M, Lemaire M, Rold n-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  PubMed  Google Scholar 

  • Verdu M, Traveset A (2005) Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. Ecology 86:1385–1394. doi:10.1890/04-1647

    Article  Google Scholar 

  • Vos P et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Walker KJ, Stevens PA, Stevens DP, Mountford JO, Manchester SJ, Pywell RF (2004) The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biol Conserv 119:1–18. doi:10.1016/j.biocon.2003.10.020

    Article  Google Scholar 

  • Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F-ST not equal 1/(4Nm + 1). Heredity 82:117–125

    Article  PubMed  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458. doi:10.1146/annurev.ecolsys.37.091305.110145

    Article  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  CAS  PubMed  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Leen Verschaeve, Nancy Van Liefferinge, An Van Breusegem, David Halfmaerten, Sabrina Neyrinck for laboratory assistance and Kasper van Acker, R. Guelinckx and the nature reserve managers of Natuurpunt for sampling assistance and information on sampling locations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Vanden Broeck.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanden Broeck, A., Ceulemans, T., Kathagen, G. et al. Dispersal constraints for the conservation of the grassland herb Thymus pulegioides L. in a highly fragmented agricultural landscape. Conserv Genet 16, 765–776 (2015). https://doi.org/10.1007/s10592-015-0698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0698-0

Keywords

Navigation