Skip to main content
Log in

Detecting natural hybridization between two vulnerable Andean pupfishes (Orestias agassizii and O. luteus) representative of the Altiplano endemic fisheries

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The detection of hybridization among freshwater fish species is of main concern for conservation programs and fish farming. We assessed the incidence of natural hybridization between two vulnerable species of Andean pupfishes (Cyprinodontidae; Orestias agassizii and O. luteus) that represent an important component of local fisheries. We combined mitochondrial and nuclear DNA sequencing, microsatellites genotyping and morphometrics to characterize hybridization patterns between the two species in lakes Titicaca and Uru Uru (N = 175). The clustering analysis of 10 microsatellite loci together with heterozygosity distribution at seven species-specific diagnostic sites in rhodopsin (nuclear DNA) proved to be a robust diagnostic tool to detect F1 and potential backcross hybrids. For the first time on a genetic basis, we confirmed the incidence of natural hybridization between the two Andean pupfishes, at frequency rates reaching almost 10 %. The morphological intermediacy criterion (relative to parental species) did not apply in hybrids, since the latter (i) deviated through their larger caudal peduncle height, and (ii) had greater, overlapping ranges in their morphometric ratios. Although viable F1 and F2 hybrids between O. agassizii and O. luteus had been reported under controlled conditions, the ecological and/or demographic factors facilitating interspecific gene flow in the wild remain speculative. We recommend that regional fish farming and restocking programs targeting O. agassizii and O. luteus call on the genetic diagnosis of hybrids to avoid the potentially deleterious impacts of releasing hybrid populations in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott R et al (2013) Hybridization and speciation. J Evol Biol 26:229–246

    Article  CAS  PubMed  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed Central  CAS  PubMed  Google Scholar 

  • Aspiazu WI (2002) Hibridación artificial entre carachi (Orestias agassii) y punku (Orestias luteus) “killifish” del Lago Titicaca. In. Facultad de Agronomía, Universidad Mayor de San Andrés, Tésis de Licenciatura, La Paz, p 62

  • Bustamante E, Treviño H (1980) Descripción de las pesquerías en el Lago Titicaca 1975–1979. Instituto Mar, Puno, p 73

    Google Scholar 

  • Campton DE (1987) Natural hybridization and introgression in fishes: methods of detection and genetic interpretations. In: Ryman N, Utter F (eds) Population genetics and fishery management. University of Washington Press, Seatle, pp 161–192

    Google Scholar 

  • Carson EW, Dowling TE (2006) Influence of hydrogeographic history and hybridization on the distribution of genetic variation in the pupfishes Cyprinodon atrotus and C. bifasciatus. Mol Ecol 15:667–679

    Article  CAS  PubMed  Google Scholar 

  • Carson EW, Maza-Benignos M, Lourdes Lozano-Vilano M, Vela-Valladares L, Banda-Villanueva I, Turner TF (2014) Conservation genetic assessment of the critically endangered Julimes pupfish, Cyprinodon julimes. Conserv Genet 15:483–488

    Article  Google Scholar 

  • Chatfield C, Collins AJ (1980) Introduction to multivariate analysis. Chapman and Hall, London 246 p

    Book  Google Scholar 

  • Collins RA (2012) Investigating interspecific hybridisation in ornamental fishes. Figshare. doi:10.6084/m9.figshare.96149

  • Dąbrowski MJ, Pilot M, Kruczyk M, Żmihorski M, Umer HM, Gliwicz J (2014) Reliability assessment of null allele detection: inconsistencies between and within different methods. Mol Ecol Resour 14:361–373

    Article  PubMed  Google Scholar 

  • Dray S, Dufour AB, Chessel D (2007) The ade4 package-II: two-table and K-table methods. R News 7:47–52

    Google Scholar 

  • Echelle AA, Carson EW, Echelle AF, Van Den Bussche RA, Dowling TE, Meyer A (2005) Historical biogeography of the New World pupfish genus Cyprinodon (Teleostei: Cyprinodontidae). Copeia 2:320–339

    Article  Google Scholar 

  • Esquer-Garrigos Y, Lambourdiere J, Ibañez C, Gaubert P (2011) Characterization of ten polymorphic microsatellite loci in the Andean pupfish Orestias agassizii, with cross-amplification in the sympatric O. luteus. Conserv Genet Resour 3:17–19

    Article  Google Scholar 

  • Esquer-Garrigos Y et al (2013) Non-invasive ancient DNA protocol for fluid-preserved specimens and phylogenetic systematics of the genus Orestias (Teleostei: Cyprinodontidae). Zootaxa 3640:373–394

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Heckel G (2006) Computer programs for population genetics data analysis: a survival guide. Nature Rev Genet 7:745–758

    Article  CAS  PubMed  Google Scholar 

  • Falk TM, Teugels GG, Abban EK, Villwock W, Renwrantz L (2003) Phylogeographic patterns in populations of the black-chinned tilapia complex (Teleostei, Cichlidae) from coastal areas in West Africa: support for the refuge zone theory. Mol Phylogenet Evol 27:81–92

    Article  PubMed  Google Scholar 

  • Felsestein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferguson MM, Danzmann RG (1987) Deviation from morphological intermediacy in interstrain hybrids of rainbow trout, Salmo gairdneri. Environ Biol Fishes 18:249–256

    Article  Google Scholar 

  • Genovart M (2008) Natural hybridization and conservation. Biodivers Conserv 18:1435–1439

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hubbs CL (1955) Hybridization between fish species in nature. Syst Zool 4:1–20

    Article  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kundzewicz ZW et al (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53:3–10

    Article  Google Scholar 

  • Lauzanne L (1982) Les Orestias (Pisces, Cyprinodontidae) du petit lac Titicaca. Rev d’Hydrobiol Trop 15:39–70

    Google Scholar 

  • Lauzanne L (1992) Native species. The Orestias. In: Dejoux C, Iltis A (eds) Lake Titicaca: a synthesis of limnological knowledge. Kluwer Academic Publishers, Dordrecht, pp 405–419

    Chapter  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lüssen A, Falk T, Villwock W (2003) Phylogenetic patterns in populations of Chilean species of the genus Orestias (Teleostei: Cyprinodontidae): results of mitochondrial DNA analysis. Mol Biol Evol 29:151–160

    Google Scholar 

  • Machordom A, Doadrio I (2001) Evidence of a Cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Mol Phylogenet Evol 18:252–263

    Article  CAS  PubMed  Google Scholar 

  • Maldonado E, Hubert N, Sagnes P, De Mérona B (2009) Morphology-diet relationships in four killifishes (Teleostei, Cyprinodontidae, Orestias) from Lake Titicaca. J Fish Biol 74:502–520

    Article  CAS  PubMed  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    Article  PubMed  Google Scholar 

  • Müller R (1993) Critical remarks on the revision of the genus Orestias (Pisces Cyprinodontidae) by Parenti (1984). Zool Jahrb Abt fuer Anat und Ontog der Tiere 123:31–58

    Google Scholar 

  • Neff NA, Smith GR (1979) Multivariate analysis of hybrid fishes. Syst Zool 28:176–196

    Article  Google Scholar 

  • Nielsen EE, Bach LA, Kotlicki P (2006) Hybridlab (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973

    Article  Google Scholar 

  • Northcote TG (1992) Eutrophication and pollution problems. In: Dejoux C, Iltis A (eds) Lake Titicaca: a synthesis of limnological knowledge. Kluwer Academic Publishers, Dordrecht, pp 551–559

    Chapter  Google Scholar 

  • Orlove BS, Levieil DP, Treviño H (1992) Social and economic aspects of the fisheries. In: Dejoux C, Iltis A (eds) Lake Titicaca: a synthesis of limnological knowledge. Kluwer Academic Publishers, Dordrecht, pp 500–504

    Google Scholar 

  • Parenti LR (1984) A taxonomic revision of the Andean killifish genus Orestias (Cyprinodontiformes, Cyprinodontidae). Bull Am Mus Nat Hist 178:107–214

    Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Evol Syst 27:83–109

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Sanz N, Araguas RM, Fernandez R, Vera M, Garcia-Marin JL (2009) Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conserv Genet 10:225–236

    Article  CAS  Google Scholar 

  • Schwenk K, Brede N, Streit B (2008) Introduction. Extent, processes and evolutionary impact of interspecific hybridization in animals. Philos Trans R Soc Lond B Biol Sci 363:2805–2811

    Article  PubMed Central  PubMed  Google Scholar 

  • Scribner KT, Page KS, Bartron ML (2001) Hybridization in freshwater fishes: a review of case studies and cytonuclear methods of biological inference. Rev Fish Biol Fish 10:293–323

    Article  Google Scholar 

  • Stephens M, Donelly P (2003) A comparison of Bayesian methods for haplotype reconstruction. Am J Hum Genet 73:1162–1169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephens M, Smith NJ, Donelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutinary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tchernavin VV (1944) A revision of the subfamily Orestiinae. Proc Zool Soc Lond 114:140–233

    Article  Google Scholar 

  • Team RDC (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Thielsch A, Völker E, Kraus RHS, Schwenk K (2012) Discrimination of hybrid classes using cross-species amplification of microsatellite loci: methodological challenges and solutions in Daphnia. Mol Ecol Resour 12:697–705

    Article  CAS  PubMed  Google Scholar 

  • Tobler M, Carson EW (2010) Environmental variation, hybridization, and phenotypic diversification in Cautro Ciénegas pupfishes. J Evol Biol 23:1475–1489

    Article  CAS  PubMed  Google Scholar 

  • Treviño H, Torres Caleron J, Roncal Gutierrez M (1992) The fishery potential. In: Dejoux C, Iltis A (eds) Lake Titicaca: a synthesis of limnological knowledge. Kluwer Academic Publishers, Dordrecht, pp 539–549

    Chapter  Google Scholar 

  • Turner BJ, Duvernell DD, Bunt TM, Barton MG (2008) Reproductive isolation among endemic pupfishes (Cyprinodon) on San Salvador Island, Bahamas: microsatellite evidence. Biol J Linn Soc 95:566–582

    Article  Google Scholar 

  • Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    Article  PubMed  Google Scholar 

  • Van Damme PA, Carvajal-Vallejos F, Sarmiento J, Barrera S, Osinaga K, Miranda-Chumacero G (2009) Peces. Libro rojo de la fauna silvestre de vertebrados de Bolivia. Ministerio de Medio Ambiente y Agua, La Paz, pp 25–90

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vellard J (1992) Former lake fisheries and fish fauna of the lake. In: Dejoux C, Iltis A (eds) Lake Titicaca: a synthesis of limnological knowledge. Kluwer Academic Publishers, Dordrecht, pp 495–499

    Google Scholar 

  • Vila I, Pardo R, Scott S (2007) Freshwater fishes of the Altiplano. Aquat Ecosyst Health 10:201–211

    Article  Google Scholar 

  • Villwock W (1986) Speciation and adaptive radiation in the Andean Orestias fishes. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 387–403

    Google Scholar 

  • Villwock W, Sienknecht U (1995) Intraspezifische variabilität im genus Orestias Valenciennes, 1839 (Teleostei: Cyprinodontidae) und zum problem der artidentität. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 92:381–398

    Google Scholar 

  • Villwock W, Sienknecht U (1996) Contribution to the knowledge and history of Chilean fishes. The cyprinodontids of the genus Orestias Val. 1839 (Teleostei: Cyprinodontidae) of the Chilean Altiplano. Medio Ambiene 13:119–126

    Google Scholar 

  • Vogel LS, Johnson SG (2008) Estimation of hybridization and introgression frequency in toads (genus: Bufo) using DNA sequence variation at mitochondrial and nuclear loci. J Herpetol 42:61–75

    Article  Google Scholar 

  • Wirtz P (1999) Mother species-father species: unidirectional hybridization in animals with female choice. Anim Behav 58:1–12

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Alexander Flores, Kelvin Herbas and Ramón Catari for field assistance (UMSA), Claude Ferrara (Direction des Collections, MNHN) for taking photographs of Orestias, and Thierry Oberdorff (UMR BOREA, MNHN) for early stage project management. This research was funded by the program “Action initiative 2008: Diversité des poisons-n°45/Radiation adaptative des Orestias dans les lacs andins”, from the Département Ressources Vivantes-Institut de Recherche pour le Développement, and Agence Nationale de la Recherche (Project “FISHLOSS-ANR-09-PEXT-008). This publication was made possible through support provided by the Institut de Recherche pour le Développement-Département Soutien et Formation to YEG. We thank three anonymous reviewers for their useful comments on an earlier version of this draft. This is publication ISEM 2014-225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yareli Esquer-Garrigos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 10190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esquer-Garrigos, Y., Hugueny, B., Ibañez, C. et al. Detecting natural hybridization between two vulnerable Andean pupfishes (Orestias agassizii and O. luteus) representative of the Altiplano endemic fisheries. Conserv Genet 16, 717–727 (2015). https://doi.org/10.1007/s10592-015-0695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0695-3

Keywords

Navigation