Skip to main content
Log in

Correlates of dispersal extent predict the degree of population genetic structuring in bats

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Dispersal is essential for maintaining demographic and genetic connectivity. For bats, correlates of dispersal extent such as morphology and movement dynamics are reported as having an influence on population genetic structure although these traits exhibit co-variance which has not been previously examined. We used a principal components framework with phylogenetically independent contrasts to compare five dispersal extent predictors (wing loading, aspect ratio, geographic range size, migratory status and median latitude) with population genetic structure among bats. We found that high wing loading values and migration negatively correlate with genetic structure after accounting for co-variance. These findings suggest that bats that can achieve higher flight speeds and migrate seasonally have higher gene flow and resultant genetic connectivity relative to bats that fly slower and do not migrate. These results represent a step towards understanding factors that shaped the genetic structure of bat populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldridge DJN, Rautenbach ILN (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778

    Article  Google Scholar 

  • Almeida FC (2009) The phylogenetic relationships of cynopterine fruit bats (Chiroptera: Pteropodidae: Cynopeterinae). Mol Phylogenet Evol 53:772–783

    Article  CAS  PubMed  Google Scholar 

  • Altringham JD (2011) Bats: from evolution to conservation, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Ammerman LK, Lee DN, Tipps TM (2012) First molecular phylogenetic insights into the evolution of free-tailed bats in the subfamily Molossinae (Molossidae, Chiroptera). J Mammal 93(1):12–28

    Article  Google Scholar 

  • Anthony LL, Blumstein DT (2000) Integrating behaviour into wildlife conservation: the multiple ways that behaviour can reduce Ne. Biol Conserv 95:303–315

    Article  Google Scholar 

  • Baker RJ, Bininda-Emonds ORP, Mantilla-Meluk H, Porter CA, Van den Bussche RA (2012) Molecular time scale of diversification of feeding strategy and morphology in New World Leaf-nosed bats (Phyllostomidae): a phylogenetic perspective. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats. Cambridge University Press, Cambridge, pp 385–409

    Chapter  Google Scholar 

  • Barrowclough GF (1983) Biochemical studies of microevolutionary processes. In: Brush AH, Clark GAJ (eds) Perspectives in Ornithology: essays presented for the centennial of the American Ornithologists’ Union. Cambridge University Press, New York, pp 257–283

    Google Scholar 

  • Bisson I-A, Safi K, Holland RA (2009) Evidence for repeated independent evolution of migration in the largest family of bats. PLoS ONE 4(10):e7504. doi:10.371/journal.pone.0007504

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74(1):21–45

    Article  CAS  PubMed  Google Scholar 

  • Bowlin MS, Wikelski M (2008) Pointed wings, low wing loading and calm air reduce migratory flight costs in songbirds. PLoS ONE 3(5):e2154

    Article  PubMed Central  PubMed  Google Scholar 

  • Bowman J, Jaeger JAG, Fahrig L (2002) Dispersal distance of mammals is proportional to home range size. Ecology 83(7):2049–2055

    Article  Google Scholar 

  • Bradbury IR, Laurel B, Snelgrove PVR, Bentzen P, Campana SE (2008) Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proc R Soc Lond B 275:1803–1809

    Article  Google Scholar 

  • Burland TM, Worthington Wilmer J (2001) Seeing in the dark: molecular approaches to the study of bat populations. Biol Rev 76:389–409

    Article  CAS  PubMed  Google Scholar 

  • Clobert J, Le Galliard J-F, Cote J, Meylan S, Masso M (2009) Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol Lett 12:197–209

    Article  PubMed  Google Scholar 

  • Cryan PM, Bogan MA, Rye RO, Landis GP, Kester CL (2004) Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. J Mammal 85(5):995–1001

    Article  Google Scholar 

  • Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264

    Article  CAS  PubMed  Google Scholar 

  • Dool SE, Puechmaille SJ, Dietz C, Juste J, Ibáñez C, Hulva P, Roue SG, Petit E, Jones G, Russo D, Toffoli R, Viglino A, Martinoli A, Rossiter SJ, Teeling EC (2013) Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: evidence from multiple genetic markers. Mol Ecol 22:4055–4070

    Article  CAS  PubMed  Google Scholar 

  • Entwistle AC, Racey PA, Speakman JR (2000) Social and population structure of a gleaning bat, Plecotus auritus. J Zool Lond 252(1):11–17

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 1311:479–491

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125(1):1–15

    Article  Google Scholar 

  • Fleming TH, Eby P (2003) Ecology of bat migration. In: Kunz TH, Fenton MB (eds) Bat ecology. The University of Chicago Press, Chicago, pp 156–197

    Google Scholar 

  • Frick WF, Pollock JF, Hicks AC, Langwig KE, Reynolds DS, Turner GG, Butchowski CM, Kunz TH (2010) An emerging disease causes regional population collapse of a common North American bat species. Science 329:679–682

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59(8):1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hendry PW (1999) Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318

    Article  Google Scholar 

  • Hewitt GM, Butlin RK (1997) Causes and consequences of population structure. In: Krebs JR, Davies NB (eds) Behavioural ecology: an evolutionary approach. Blackwell Science Ltd., Oxford, pp 203–277

    Google Scholar 

  • Holt RD, Lawton JH, Gaston KJ (1997) On the relationship between range size and local abundance: back to basics. Oikos 78:183–190

    Article  Google Scholar 

  • Hoofer SR, Van den Bussche RA (2003) Molecular phylogenetics of the Chiropteran family Vespertilionidae. Acta Chiropterol 5(1):1–63

    Article  Google Scholar 

  • Hutterer R, Ivanova T, Meyer-Cords C, Rodrigues L (2005) Bat migrations in Europe: a review of banding data and literature. Naturschuta und Biologische Vielfalt Heft 28. Federal Agency for Nature Conservation, Bonn

    Google Scholar 

  • IUCN Red List of Threatened Species. Version 2012.2 (2012) www.iucnredlist.org. Accessed 10 Jan 2013

  • Jones KE, Purvis A, Gittleman JL (2003) Biological correlates of extinction risk in bats. Am Nat 161(4):601–614

    Article  PubMed  Google Scholar 

  • Kerth G (2008) Causes and consequences of sociality in bats. Bioscience 58(8):737–746

    Article  Google Scholar 

  • Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84(8):2007–2010

    Article  Google Scholar 

  • Laube I, Korntheuer H, Schwager M, Trautmann S, Rahbek C, Bohning-Gaese K (2013) Towards a more mechanistic understanding of traits and range sizes. Glob Ecol Biogeogr 22:233–241

    Article  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25(1):1–18

    Google Scholar 

  • Lowe WH, Allendorf FW (2010) What can genetics tell us about population connectivity? Mol Ecol 19:3038–3051

    Article  PubMed  Google Scholar 

  • McCracken GF (1984) Social dispersion and genetic variation in two species of Emballonurid bats. Z Tierpsychol 66(1):55–69

    Article  Google Scholar 

  • McCracken GF, Bradbury JW (1981) Social organization and kinship in the polygynous bat Phyllostomus hastatus. Behav Ecol Sociobiol 8(1):11–34. doi:10.1007/bf00302840

    Article  Google Scholar 

  • McCracken GF, Wilkinson GS (2000) Bat mating systems. In: Crichton EG, Krutzsch PH (eds) Reproductive biology of bats. Academic Press, San Diego, pp 321–362

    Chapter  Google Scholar 

  • McGuire LP, Ratcliffe JM (2011) Light enough to travel: migratory bats have smaller brains, but not larger hippocampi, than sedentary species. Biol Lett 7:233–236

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller MP, Mullins TD, Parrish JW, Walters JR, Haig SM (2012) Variation in migratory behavior influences regional genetic diversity and structure among American Kestrel populations (Falco sparverius) in North America. J Hered 103(4):503–514

    Article  CAS  PubMed  Google Scholar 

  • Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24(7):1553–1561

    Article  CAS  PubMed  Google Scholar 

  • Moussy C, Hosken DJ, Mathews F, Smith GC, Aegerter J, Bearhop S (2012) Migration and dispersal patterns of bats and their influence on genetic structure. Mamm Rev 43(3):183–195. doi:10.1111/j.1365-2907.2012.00218.x

  • Muscarella RA, Murray KL, Ortt D, Russell AL, Fleming TH (2011) Exploring demographic, physical, and historical explanations for the genetic structure of two lineages of Greater Antillean bats. PLoS ONE 6(3):e17704. doi:10.1371/journal.pone.0017704

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet Lond 41:225

    Article  CAS  Google Scholar 

  • Norberg UM, Raynor JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos Trans R Soc Lond B 316(1179):335–427

    Article  Google Scholar 

  • Olival KJ (2012) Evolutionary and ecological correlates of population genetic structure in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary history of bats. Cambridge University Press, Cambridge, pp 267–316

    Chapter  Google Scholar 

  • Orme CDL (2012) The caper package: comparative analyses in phylogenetics and evolution in R. http://caper.r.forge.r-project.org. Accessed 8 Aug 2013

  • Paar J, Oldroyd BP, Huettinger E, Kastberger G (2004) Genetic structure of an Apis dorsata population: the significance of migration and colony aggregation. J Hered 95(2):119–126

    Article  CAS  PubMed  Google Scholar 

  • Pagès J (2004) Analyse factorielle de données mixtes. Rev Stat Appl LII(4):93–111

    Google Scholar 

  • Paradis E, Baillie SR, Sutherland WJ, Gregory RD (1998) Patterns of natal and breeding dispersal in birds. J Anim Ecol 67(4):518–536

    Article  Google Scholar 

  • Peterson AT, Heaney LW (1993) Genetic differentiation in Philippine bats of the genera Cynopterus and Haplonycteris. Biol J Linn Soc 49:203–218

    Article  Google Scholar 

  • Purvis A, Gittleman JL, Cowlishae G, Mace GM (2000) Predicting extinction risk in declining species. Proc R Soc Lond B 267:1947–1952

    Article  CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org. Accessed 22 July 2013

  • Rossiter SJ, Zubaid A, Mohd-Adnan A, Struebig MJ, Kunz TH, Gopal S, Petit E, Kingston T (2012) Social organization and genetic structure: insights from codistributed bat populations. Mol Ecol 21:647–661

    Article  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruedi M, Castella V (2003) Genetic consequences of the ice ages on nurseries of the bat Myotis myotis: a mitochondrial and nuclear survey. Mol Ecol 12:1527–1540

    Article  CAS  PubMed  Google Scholar 

  • Russell AL, Medellin RA, McCracken GF (2005) Genetic variation and migration in the Mexican free-tailed bat (Tadarida brasiliensis mexicana). Mol Ecol 14:2207–2222

    Article  CAS  PubMed  Google Scholar 

  • Safi K, Kerth G (2004) A comparative analysis of specialization and extinction risk in temperate-zone bats. Conserv Biol 18(5):1293–1303

    Article  Google Scholar 

  • Sekar S (2012) A meta-analysis of the traits affecting dispersal ability in butterflies: can wingspan be used as a proxy? J Anim Ecol 81:174–184

    Article  PubMed  Google Scholar 

  • Silva M, Downing JA (1995) CRC handbook of mammalian body masses. CRC Press, Boca Raton

    Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  • Stadelmann B, Lin LK, Kunz TH, Ruedi M (2007) Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol 43(1):32–48

    Article  CAS  PubMed  Google Scholar 

  • Stevens VM, Turlure C, Baguette M (2010) A meta-analysis of dispersal in butterflies. Biol Rev 85:625–642

    PubMed  Google Scholar 

  • Storz JF (1999) Genetic consequences of mammalian social structure. J Mammal 80(2):553–569

    Article  Google Scholar 

  • Tabachnick BG, Fidell LS (2006) Using multivariate statistics, 5th edn. Harper Collins College Publisher, New York

    Google Scholar 

  • Taylor PJ, Goodman SM, Schoeman MC, Ratrimomanarivo FH, Lamb JL (2012) Wing loading correlates negatively with genetic structuring of eight Afro-Malagasy bat species (Molossidae). Acta Chiropterol 14(1):53–62

    Article  Google Scholar 

  • Turmelle AS, Olival KJ (2009) Correlates of viral richness in bats (Order Chiroptera). EcoHealth 6:522–539

    Article  PubMed  Google Scholar 

  • van Staaden MJ (1995) Breeding tactics, social structure and genetic variation in mammals: problems and prospects. Acta Theriol Suppl 3:165–182

    Article  Google Scholar 

  • Whitlock MC (2011) Gst′ and D do not replace Fst. Mol Ecol 20:1083–1091

    Article  PubMed  Google Scholar 

  • Whitmee S, Orme CDL (2013) Predicting dispersal distance in mammals: a trait-based approach. J Anim Ecol 82:211–221

    Article  PubMed  Google Scholar 

  • Wilkinson GS (1985) The social organization of the common vampire bat II. Mating system, genetic structure, and relatedness. Behav Ecol Sociobiol 17:123–134

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank H. Whitehead, M. Leonard, A. Pinder, T. Frasier and two anonymous reviewers for thoughtful discussion and comments that greatly improved this manuscript. G. Baker and C. Garroway provided assistance with the GIS and R analysis, respectively. This research was funded by an NSERC post-graduate scholarship (LEB) and NSERC Discovery Grant (HGB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynne E. Burns.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 134 kb)

Supplementary material 2 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burns, L.E., Broders, H.G. Correlates of dispersal extent predict the degree of population genetic structuring in bats. Conserv Genet 15, 1371–1379 (2014). https://doi.org/10.1007/s10592-014-0623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0623-y

Keywords

Navigation