Skip to main content

Advertisement

Log in

Dispersal patterns and population structuring among platypuses, Ornithorhynchus anatinus, throughout south-eastern Australia

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Dispersal patterns can have a major impact on the dynamics and viability of populations, and understanding these patterns is crucial to the conservation and management of a species. In this study, patterns of sex-biased dispersal and waterway/overland dispersal are investigated in the endemic Australian platypus, Ornithorhynchus anatinus, a semi-aquatic monotreme. Analyses of over 750 individuals from south-eastern Australia at 13 microsatellite loci and two mitochondrial genes, cytochrome b and cytochrome oxidase subunit II, provide genetic insight into dispersal patterns. For the first time, platypuses of western Victoria are shown to be genetically distinct from other populations of the mainland. Despite distinct morphological differentiation either side of the Great Dividing Range, populations remain genetically similar between coastal and inland areas suggesting gene flow is likely to occur across these ranges. Landscape genetic analyses indicate variability in dispersal patterns between Victorian and Tasmanian platypuses with a greater avoidance of overland travel indicated in Victoria compared to Tasmania. Females appear to remain within their natal area or return to breed, maintaining greater genetic structure in maternally inherited mitochondrial DNA in comparison to nuclear DNA and sharing genetic similarity within a short river distance (i.e. ≤1.4 km). The results of this study provide a valuable spatial framework for the management of wild platypus populations within south-eastern Australia and a baseline for future monitoring of populations that are likely to be impacted by environmental and anthropogenic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akiyama S (1998) Molecular ecology of the platypus (Ornithorhynchus anatinus). School of Biochemistry and Genetics, La Trobe University, Bundoora

    Google Scholar 

  • APC (2001) Ripples issue 18. Newsletter of the Australian Platypus Conservancy

  • Aulstad D, Trygve G, Skjervold H (1972) Genetic and environmental sources of variation in length and weight of rainbow trout (Salmo gairdneri). J Fish Res Board Can 29:237–241

    Google Scholar 

  • Australian-Government (2011) Australian Natural Resources Atlas. Department of Sustainability, Environment, Water, Population and Communities, Canberra, ACT. http://www.anra.gov.au/topics/water/pubs/state_overview/tas_ovpage.html. Accessed online 09 Sept 2011

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  • Bernatchez L, Guyomard R, Bonhomme F (1992) DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Mol Ecol 1:161–173

    Google Scholar 

  • Bishop P (1995) Drainage rearrangement by river capture, beheading and diversion. Prog Phys Geogr 19:449–473

    Article  Google Scholar 

  • Blacket MJ, Robin C, Good RT, Lee SF, Miller AD (2012) Universal primers for fluorescent labelling of PCR fragments: an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 12(3):456–463

    Article  PubMed  CAS  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  PubMed  CAS  Google Scholar 

  • Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Zhao K et al (2010) A simple genetic architecture underlies morphological variation in dogs. PLOS Biol 8:e1000451

    Google Scholar 

  • Burrell H (1927) The platypus. Angus and Robertson, Sydney

    Google Scholar 

  • Caley MJ (1987) Dispersal and inbreeding avoidance in muskrats. Anim Behav 35:1225–1233

    Google Scholar 

  • Carrick FN, Grant TR, Temple-Smith PD (2008) Platypus. In: Van Dyck S, Strahan R (eds) The mammals of Australia, 3rd edn. Reed New Holland, Sydney, pp 32–35

    Google Scholar 

  • Clutton-Brock TH (1989) Female transfer and inbreeding avoidance in social mammals. Nature 337:70–72

    Google Scholar 

  • Coleman RA, Pettigrove V, Raadik TA, Hoffmann AA, Miller AD, Carew ME (2010) Microsatellite markers and mtDNA data indicate two distinct groups in dwarf galaxias, Galaxiella pusilla (Mack) (Pises: Galaxiidae), a threatened freshwater fish from south-eastern Australia. Conserv Genet 11:1911–1928

    Article  Google Scholar 

  • Connolly JH, Obendorf DL, Whittington RJ, Muir DB (1997) Causes of morbidity and mortality in platypus (Ornithorhynchus anatinus) from Tasmania, with particular reference to Mucor amphibiorum infection. Aust Mammal 20:177–187

    Google Scholar 

  • Cook BD, Baker AM, Page TJ, Grant SC, Fawcett JH, Hurwood DA et al (2006) Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification. Mol Ecol 15:1083–1093

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JA, Wallace MW, Holdgate GR, Gallagher SJ, Thomas L (2002) Origin and timing of the Miocene–Pliocene unconformity in southeast Australia. J Sediment Res 72:288–303

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17(5):1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Ellis R (2000) Baseline information and management of platypus (Ornithorhynchus anatinus) within Flinders Chase National Park, Kangaroo Island, South Australia. Natural Resource Management, University of New England, Armidale, p 94

    Google Scholar 

  • Endersby NM, McKechnie SW, Vogel H, Gahan LJ, Baxter SW, Ridland PM, Weeks AR (2005) Microsatellites isolated from diamondback moth, Plutella xylostella (L.), for studies of dispersal in Australian populations. Mol Ecol Notes 5:51–53

    Article  CAS  Google Scholar 

  • Etherington TR (2010) Python based GIS tools for landscape genetics: visualising genetic relatedness and measuring landscape connectivity. Methods Ecol Evol 2:52–55

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Excoffier L, Smouse P, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Faragher RA, Grant TR, Carrick FN (1979) Food of the platypus (Ornithorhynchus anatinus) with notes on the food of the Brown Trout (Salmo trutta) in the Shoalhaven River, N.S.W. Aust J Ecol 4:171–179

    Article  Google Scholar 

  • Favre L, Balloux F, Goudet J, Perrin N (1997) Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc R Soc Lond B 264:127–132

    Article  CAS  Google Scholar 

  • Fish FE, Frappell PB, Baudinette RV, MacFarlane PM (2001) Energetics of terrestrial locomotion of the platypus, Ornithorhynchus anatinus. J Exp Biol 204:797–803

    PubMed  CAS  Google Scholar 

  • Flint J, Mackay TFC (2009) Genetic architecture of quantitative traits in mice, flies and humans. Genome Res 19:723–733

    Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    PubMed  CAS  Google Scholar 

  • Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709

    PubMed  CAS  Google Scholar 

  • Furlan E, Umina PA, Mitrovski PJ, Gust N, Griffiths J, Weeks AR (2010) High levels of genetic divergence between Tasmanian and Victorian platypuses, Ornithorhynchus anatinus, as revealed by microsatellite loci. Conserv Genet 11:319–323

    Article  Google Scholar 

  • Furlan E, Griffiths J, Gust N, Armistead R, Mitrovski P, Handasyde KA, Serena M et al (2011) Is body size variation in the platypus, Ornithorhynchus anatinus, associated with environmental variables? Aust J Zool 59:201–215

    Article  Google Scholar 

  • Gemmell NJ (1994) Population and evolutionary investigations in the platypus (Ornithorhynchus anatinus): a molecular approach. PhD Thesis, School of Genetics and Human Variation, La Trobe University, Bundoora, p 168

  • Georges A, Adams M, Baverstock P (1998) Biochemical systematics of Australian chelid turtles (abstract only). Australian Bicentennial Herpetological Conference, Queensland Museum, Brisbane

  • Geoscience Australia (1997) Australia’s River Basins. Department of Industry TaR, Geoscience Australia, Canberra ACT

  • Geoscience Australia (2000) Drainage Australia. Australian Geological Survey Organisation, Canberra ACT

  • Gongora J, Swan AB, Chong AY, Ho SYW, Damayanti CS, Kolomyjec SH, Grant TR et al (2011) Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA. J Zool 286:110–119

    Article  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www.unil.ch/izea/softwares/fstat.html. Accessed 4 May 2011

  • Goudet J, Perrin N, Waser P (2002) Test for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Grant TR (1992a) Captures, movements and dispersal of platypuses, Ornithorhynchus anatinus, in the Shoalhaven River, New South Wales, with evaluation of capture and marking techniques. In: Augee ML (ed) Platypus and echidnas. Royal Zoological Society of NSW, Sydney, pp 255–262

    Google Scholar 

  • Grant TR (1992b) Historical and current distribution of the platypus, Ornithorhynchus anatinus, in Australia. In: Augee ML (ed) Platypus and echidnas. Royal Zoological Society of NSW, Sydney, pp 232–254

    Google Scholar 

  • Grant TR (2004) Captures, capture mortality, age and sex ratios of platypuses, Ornithorhynchus anatinus, during studies over 30 years in the upper Shoalhaven River in New South Wales. Proc Linn Soc NSW 125:217–226

    Google Scholar 

  • Grant T (2007) Platypus. CSIRO, Collingwood

    Google Scholar 

  • Grant TR, Dawson TJ (1978) Temperature regulation in the platypus, Ornithorhynchus anatinus: production and loss of metabolic heat in air and water. Physiol Zool 51:315–332

    Google Scholar 

  • Grant TR, Temple-Smith PD (2003) Conservation of the platypus, Ornithorhynchus anatinus: threats and challenges. Aquat Ecosyst Health Manag 6:5–18

    Article  Google Scholar 

  • Grant TR, Griffiths M, Temple-Smith PD (2004) Breeding in a free-ranging population of platypuses, Ornithorhynchus anatinus, in the upper Shoalhaven River, New South Wales: a 27 year study. Proc Linn Soc NSW 125:227–234

    Google Scholar 

  • Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162

    Article  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24:1406–1407

    Article  PubMed  CAS  Google Scholar 

  • Guillot G, Santos F, Estoup A (2009) Population genetics analysis using R and Geneland. Geneland Manual

  • Gust N, Griffiths J (2009) Platypus mucormycosis and its conservation implications. Aust Mycol 28:1–8

    Google Scholar 

  • Gust N, Handasyde KA (1995) Seasonal variation in the ranging behaviour of the platypus (Ornithorhynchus anatinus) on the Goulburn River, Victoria. Aust J Zool 43:193–208

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis. Department of Microbiology, North Carolina State University

  • Hammer MP (2001) Molecular systematics and conservation biology of the southern pygmy perch Nannoperca australis (Gunther, 1861) (Teleostei: Percichthyidae) in south-eastern Australia. B.Sc. (Honours) Thesis, Adelaide University

  • Handasyde KA, McDonald IR, Evans BK (1992) Seasonal changes in plasma concentrations of progesterone in free-ranging platypus (Ornithorhynchus anatinus). In: Augee ML (ed) Platypus and echidnas. Royal Zoological Society of New South Wales, Sydney, pp 75–79

    Google Scholar 

  • Handasyde KA, McDonald IR, Evans BK (2003) Plasma glucocorticoid concentrations in free-ranging platypuses (Ornithorhynchus anatinus): response to capture and patterns in relation to reproduction. Comp Biochem Physiol Part A 136:895–902

    Article  CAS  Google Scholar 

  • Harris PT, Heap AD, Passlow V, Sbaffi L, Fellows M, Porter-Smith R, Buchanan C et al (2005) Geomorphic features of the continental margin of Australia. Record 2003/30, Geoscience Australia, Canberra, p 142

  • Heggenes J, Røed KH (2006) Do dams increase genetic diversity in brown trout (Salmo trutta)? Microgeographic differentiation in a fragmented river. Ecol Freshw Fish 15:366–375

    Article  Google Scholar 

  • Hoffmann AA, Blows MW (1994) Species boarders: ecological and evolutionary perspectives. Trends Ecol Evol 9(6):223–227

    Article  PubMed  CAS  Google Scholar 

  • Hood G (2002) POPTOOLS. CSIRO, Canberra

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  PubMed  CAS  Google Scholar 

  • Hughes JM (2007) Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biol 52:616–631

    Google Scholar 

  • Hughes JM, Schmidt DJ, Finn DS (2009) Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. BioScience 59:573–583

    Google Scholar 

  • Hurwood DA, Hughes JM (2001) Nested clade analysis of the freshwater shrimp, Caridina zebra (Decapoda: Atyidae), from north-eastern Australia. Mol Ecol 10:113–125

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC fourth assessment report: climate change 2007. http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html. Accessed 16 July 2011

  • Janke A, Gemmell NJ, Feldmaier-Fuchs G, Von Haeseler A, Pääbo S (1996) The mitochondrial genome of a monotreme: the platypus (Ornithorhynchus anatinus). J Mol Evol 42:153–159

    Article  PubMed  CAS  Google Scholar 

  • Jerry DR (2008) Phylogeography of the freshwater catfish Tandanus tandanus (Plotosidae): a model species to understand evolution of the eastern freshwater fauna. Mar Freshwater Res 59:351–360

    Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  Google Scholar 

  • Kiernan K (1990) The extent of late Cenozoic glaciation in the central highlands of Tasmania, Australia. Arct Alp Res 22:341–354

    Article  Google Scholar 

  • Klamt M, Thompson R, Davis JA (2011) Early response of the platypus to climate warming. Glob Chang Biol 17:3011–3018

    Article  Google Scholar 

  • Kolomyjec SH (2010) The history and relationships of northern platypus (Ornithorhynchus anatinus) populations: a molecular approach. PhD Thesis, School of Marine and Tropical Biology, James Cook University

  • Kolomyjec SH, Chong JYT, Blair D, Gongora J, Grant TR, Johnson CN, Moran C (2009) Population genetics of the platypus (Ornithorhynchus anatinus): a fine-scale look at adjacent river systems. Aust J Zool 57:225–234

    Google Scholar 

  • Kotlik P, Berrebi P (2001) Phylogeography of the barbel (Barbus barbus) assessed by mitochondrial DNA variation. Mol Ecol 10:2177–2185

    Google Scholar 

  • Lawson Handley LJ, Perrin N (2007) Advances in our understanding of mammalian sex-biased dispersal. Mol Ecol 16:1559–1578

    Article  PubMed  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Lunney D, Dickman C, Copley P, Grant T, Munks S, Carrick F, Serena M et al (2008) Ornithorhynchus anatinus. IUCN 2011: IUCN red list of threatened species, Version 2011.2. Available from www.iucnredlist.org. Accessed 12 Oct 2011

  • Manly BFJ (1991) Randomization and Monte Carlo methods in biology. Chapman & Hall, London

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • McGlashan DJ, Hughes JM (2000) Reconciling patterns of genetic variation with stream structure, earth history and biology in the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae). Mol Ecol 9:1737

  • McLachlan-Troup TA (2007) The ecology and functional importance of the platypus (Ornithorhynchus anatinus) in Australian freshwater habitats. PhD Thesis, University of Sydney, New South Wales, p 204

  • McLachlan-Troup TA, Dickman CR, Grant TR (2010) Diet and dietary selectivity of the platypus in relation to season, sex and macroinvertebrate assemblages. J Zool 280:237–246

    Article  Google Scholar 

  • Miller AD, Austin CM (2006) The complete mitochondrial genome of the mantid shrimp Harpiosquilla harpax, and a phylogenetic investigation of the Decapoda using mitochondrial sequences. Mol Phylogenet Evol 38:565–574

    Article  PubMed  CAS  Google Scholar 

  • Musyl MK, Keenan CP (1992) Population genetics and zoogeography of Australian freshwater golden perch, Macquaria ambigua (Richardson 1845) (Teleostei: Percichthyidae), and electrophoretic identification of a new species from the Lake Eyre basin. Aust J Mar Freshw Res 43:1585–1601

    Article  Google Scholar 

  • Nylin S, Gotthard K (1998) Plasticity in life-history traits. Annu Rev Entomol 43:63–83

    Article  PubMed  CAS  Google Scholar 

  • Otley HM, Munks SA, Hindell MA (2000) Activity patterns, movements and burrows of platypuses (Ornithorhynchus anatinus) in a sub-alpine Tasmanian lake. Aust J Zool 48:701–713

    Article  Google Scholar 

  • Parkes J, Anderson D (2009) Review of the program to eradicate foxes (Vulpes vulpes) from Tasmania. Report for Department of Primary Industries, Parks, Water and Environment Tasmania, Landcare Research

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel: population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Perrin N, Mazalov V (2000) Local competition, inbreeding, and the evolution of sex-biased dispersal. Am Nat 155:116–127

    Article  PubMed  Google Scholar 

  • Pierre JB, Bogard M, Herrmann D, Huyghe C, Julier B (2011) A CONSTANS-like gene candidate that could explain most of the genetic variation for flowering date in Medicago truncatula. Mol Breed 28:25–35

    Article  Google Scholar 

  • Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2010) Documentation for STRUCTURE software: version 2.3. Available from http://pritch.bsd.uchicago.edu/structure.html. Accessed 7 Sept 2011

  • R-Development-Core-Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Refstie T (1980) Genetic and environmental sources of variation in body-weight and length of rainbow-trout fingerlings. Aquaculture 19:351–357

    Google Scholar 

  • Reid DG, Code TE, Reid ACH, Herrero SM (1994) Spacing, movements, and habitat selection of the river otter in boreal Alberta. Can J Zool 72:1314–1324

    Google Scholar 

  • Riek A, Geiser F (2012) Developmental phenotypic plasticity in a marsupial. J Exp Biol 215(9):1552–1558

    Article  PubMed  Google Scholar 

  • Robson B (2008) Managing flows for ephemeral streams. Australian Government Land & Water Australia, Canberra

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Rourke M (2008) Variable stocking impact and endemic population genetic structure in Murray cod (Maccullochella peelii peelii)

  • Rourke ML, McPartlan HC, Ingram BA, Taylor AC (2011) Variable stocking effect and endemic population genetic structure in Murray cod Maccullochella peelii. J Fish Biol 79:155–177

    Article  PubMed  CAS  Google Scholar 

  • Saunders G, Lane C, Harris S, Dickman C (2006) Foxes in Tasmania: a report on the incursion of an invasive species. Invasive Animals CRC, Canberra

    Google Scholar 

  • Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452

    Article  Google Scholar 

  • Sepulveda-Villet OJ, Ford AM, Williams JD, Stepien CA (2009) Population genetic diversity and phylogeographic divergence patterns of the yellow perch (Perca flavescens). J Great Lakes Res 35:107–119

    Google Scholar 

  • Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82:561–573

    Article  PubMed  Google Scholar 

  • Solovyeva DV, Pearce JM (2011) Comparative mitochondrial genetics of North American and Eurasian mergansers with an emphasis on the endangered scaly-sided merganser (Mergus squamatus). Conserv Genet 12:839–844

    Article  Google Scholar 

  • Stillwell RC, Fox CW (2009) Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity. Oikos 118(5):703–712

    Article  Google Scholar 

  • Stone RD, Gorman ML (1985) Social organization of the European mole (Talpa europaea) and the Pyrenean desman (Galemys pyrenaicus). Mammal Rev 15:35–42

    Google Scholar 

  • Surridge AK, Bell DJ, Hewitt GM (1999) From population structure to individual behaviour: genetic analysis of social structure in the European wild rabbit (Oryctolagus cuniculus). Biol J Linn Soc 68:57–71

    Article  Google Scholar 

  • Sweitzer RA, Berger J (1998) Evidence for female-biased dispersal in North American porcupines (Erethizon dorsatum). J Zool 244:159–166

    Google Scholar 

  • Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony (* and other methods), Version 4. Sinauer Associates, Sunderland

  • Symula R, Keogh JS, Cannatella DC (2008) Ancient phylogeographic divergence in southeastern Australia among populations of the widespread common froglet, Crinia signifera. Mol Phylogenet Evol 47:569–580

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Temple-Smith PD (1973) Seasonal breeding biology of the platypus, Ornithorhynchus anatinus (Shaw, 1799), with special reference to the male. PhD Thesis, Australian National University, p 236

  • Unmack PJ (2001) Biogeography of Australian freshwater fishes. J Biogeogr 28:1053–1089

    Article  Google Scholar 

  • Walker FM, Taylor AC, Sunnucks P (2008) Female dispersal and male kinship–based association in southern hairy-nosed wombats (Lasiorhinus latifrons). Mol Ecol 17:1361–1374

    Google Scholar 

  • Warren W, Hillier LW, Graves JAM, Birney E, Ponting CP, Grützner F, Belov K et al (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453:175–184

    Article  PubMed  CAS  Google Scholar 

  • Watson GF, Littlejohn MJ (1985) Patterns of distribution, speciation and vicariance biogeography of south-eastern Australian amphibians. In: Grigg GC, Shine R, Ehmann H (eds) Biology of Australasian frogs and reptiles. Royal Zoological Society of New South Wales, Sydney, pp 91–97

    Google Scholar 

  • Weedon MN, Lango H, Lindgren CM, Wallace C, Evans D, Mangino M, Freathy RM et al (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 40:575–583

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 38:114–138

    Google Scholar 

  • Young L (2005) The source: a magazine by Melbourne Water. Melbourne Water, Melbourne, Issue 35

  • Zhan XJ, Zhang ZJ, Wu H, Goossens B, Li M, Jiang M, Bruford W et al (2007) Molecular analysis of dispersal in giant pandas. Mol Ecol 16:3792–3800

    Google Scholar 

Download references

Acknowledgments

We would like to thank the Holsworth Wildlife Research Fund, Melbourne Water, Albert Shimmins Memorial Fund and the Australian Government via both NRM North and the ‘Caring for Our Country’ Program for funding. ARW was funded by an Australian Research Council Research Fellowship. We thank Michael Driessen and Annie Philips from DPIW and the many volunteers for help collecting samples. Thanks also to Dean Gilligan and Michael Rodgers of NSW DPI who collected the samples from the Gwydir and Border Rivers systems and Melody Serena and Geoff Williams of the Australian Platypus Conservancy who provided samples from the Snowy and La Trobe river systems. Thanks also to Adam Miller for assistance with molecular work and data analysis. This work was carried out with ethics approval and wildlife research permits for Victoria (DPI 09.07, DPI fisheries RP-88-52, RP-90-115, RP-90-197, RP-91-159 and RP907, DSE 10004130, netting permits FAG/CB/1989-PAN-2 and FOP/BART/30), Tasmania (DPIW 16/2007-08, Tasmanian Inland Fisheries 2007/47) and NSW (Department of Environment and Climate Change Scientific Research License #S10478, DPI Scientific Research Permit #F84.1245 and DPI Animal Research Authority—Trim File No. 01/1091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Furlan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furlan, E.M., Griffiths, J., Gust, N. et al. Dispersal patterns and population structuring among platypuses, Ornithorhynchus anatinus, throughout south-eastern Australia. Conserv Genet 14, 837–853 (2013). https://doi.org/10.1007/s10592-013-0478-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0478-7

Keywords

Navigation