Skip to main content
Log in

Genetic diversity, compatibility patterns and seed quality in isolated populations of Cypripedium calceolus (Orchidaceae)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Cypripedium calceolus has suffered an alarming decline, and today mainly occurs in small and isolated populations. In Denmark there are only two populations, close to each other and situated far from other European stands. One population is stagnant or in slow decline, whereas the other is in rapid increase. We examined the levels of genetic diversity and compatibility and seed quality following experimental crosses. No genetic variation could be detected in plastid and nuclear markers within or between the two populations—in contrast to results previously reported from other European populations of C. calceolus. This may indicate a founder effect in both populations, but it could also be the outcome of prolonged inbreeding or reflect a genetic bottleneck after the populations were established. According to fruit dimensions and frequency of fully developed seeds there was full self-compatibility in the stagnant population, and partial late-acting self-incompatibility in the proliferating population. In combination with previous reports from other countries, this suggests that several self-incompatibility systems may occur in C. calceolus. Seeds from the older and stagnant population performed more poorly in germination tests in vitro than seeds from the thriving population. The difference needs not be genetically based, but could be due to environmental differences during seed maturation, producing different seed quality or dormancy characteristics. However, low level of genetic diversity within the populations may affect their ability to adapt and the possibility of inbreeding depression should be investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antonelli A, Dahlberg CJ, Carlgren KHI, Appelqvist T (2009) Pollination of the lady’s slipper orchid (Cypripedium calceolus) in Scandinavia—taxonomic and conservational aspects. Nord J Bot 27:266–273

    Article  Google Scholar 

  • Borba EL, Semir J, Shepherd GJ (2001) Self-incompatibility, inbreeding depression and crossing potential in five Brazilian Pleurothallis (Orchidaceae) species. Ann Bot 88:89–99

    Article  Google Scholar 

  • Brachet S, Jubier MF, Richard M, Jung-Muller B, Frascaria-Lacoste N (1999) Rapid identification of microsatellite loci using 5′ anchored PCR in the common ash Fraxinus excelsior. Mol Ecol 8:160–163

    CAS  Google Scholar 

  • Brigham CA (2003) Factors affecting persistence in formerly common and historically rare plants. In: Brigham CA, Schwartz MW (eds) Population viability in plants: conservation, management, and modeling of rare plants. Springer, Berlin, pp 59–97

    Google Scholar 

  • Brzosko E, Ratkiewicz M, Wróblewska A (2002) Allozyme differentiation and genetic structure of the lady’s slipper (Cypripedium calceolus) island populations in north-east Poland. Bot J Linn Soc 138:433–440

    Article  Google Scholar 

  • Brzosko E, Wróblewska A, Ratkiewicz M, Till-Bottraud I, Nicole F, Baranowska U (2009) Genetic diversity of Cypripedium calceolus at the edge and in the centre of its range in Europe. Ann Bot Fenn 46:201–214

    Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1990) Inbreeding depression with heterozygote advantage and its effect on selection for modifiers changing the outcrossing rate. Evolution 44:870–888

    Article  Google Scholar 

  • Cribb P (1997) The genus Cypripedium. Timber Press, Portland, The Royal Botanic Gardens, Kew

    Google Scholar 

  • Darwin C (1877) The various contrivances by which orchids are fertilised by insects, 2nd edn. John Murray, London

    Google Scholar 

  • Daumann E (1968) Zur Bestäubungsökologie von Cypripedium calceolus L. Österr Bot Z 115:434–446

    Article  Google Scholar 

  • DeMauro MM (1993) Relationship of breeding system to rarity in the lakeside daisy (Hymenoxys acaulis var. glabra). Conserv Biol 7:542–550

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Am 19:11–15

    Google Scholar 

  • Dudash MR, Fenster CB (2000) Inbreeding and outbreeding depression in fragmented populations. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 35–53

    Chapter  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Erneberg M, Holm B (1999) Bee size and pollen transfer in Cypripedium calceolus (Orchidaceae). Nord J Bot 19:363–367

    Article  Google Scholar 

  • Fay MF, Cowan RS (2001) Plastid microsatellites in Cypripedium calceolus (Orchidaceae): genetic fingerprints from herbarium specimens. Lindleyana 16:151–156

    Google Scholar 

  • Fay MF, Bone R, Cook P, Kahandawala I, Greensmith J, Harris S, Pedersen HÆ, Ingrouille MJ, Lexer C (2009) Genetic diversity in Cypripedium calceolus (Orchidaceae) with a focus on northwestern Europe, as revealed by plastid DNA length polymorphisms. Ann Bot 104:517–525

    Article  PubMed  CAS  Google Scholar 

  • Ferdy JB, Loriot S, Sandmeier M, Lefranc M, Raquin C (2001) Inbreeding depression in a rare deceptive orchid. Can J Bot 79:1181–1188

    Article  Google Scholar 

  • Ferrer MM, Good-Avila SV, Montaña C, Domínguez CA, Eguiarte LE (2009) Effect of variation in self-incompatibility on pollen limitation and inbreeding depression in Flourensia cernua (Asteraceae) scrubs of contrasting density. Ann Bot 103:1077–1089

    Article  PubMed  Google Scholar 

  • Fischer M, Matthies D (1998) RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae). Am J Bot 85:811–819

    Article  PubMed  CAS  Google Scholar 

  • Fischer M, Matthies D, Schmid B (1997) Responses of rare calcareous grassland plants to elevated CO2: a field experiment with Gentianella germanica and Gentiana cruciata. J Ecol 85:681–691

    Article  Google Scholar 

  • Fischer M, van Kleunen M, Schmid B (2000) Genetic Allee effects on performance, plasticity and developmental stability in a clonal plant. Ecol Lett 3:530–539

    Article  Google Scholar 

  • Grøntved J (1948) Danmarks Topografisk-Botaniske Undersøgelse iværksat af Dansk Botanisk Forening. Nr. 15. Orchidéernes Udbredelse i Danmark. Bot Tidsskr 47:277–370

    Google Scholar 

  • Hiscock SJ, McInnis SM (2003) The diversity of self-incompatibility systems in flowering plants. Plant Biol 5:23–32

    Article  CAS  Google Scholar 

  • Honnay O, Bossuyt B (2005) Prolonged clonal growth: escape route or route to extinction? Oikos 108:427–432

    Article  Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50:54–70

    Article  Google Scholar 

  • Kahandawala IM (2009) Genome size evolution and conservation genetics in Cypripedium (Orchidaceae). PhD thesis, Birkbeck, University of London

  • Kahn AP, Morse DH (1991) Pollinium germination and putative ovule penetration in self- and cross-pollinated common milkweed Asclepias syriaca. Am Midl Nat 126:61–67

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kéry M, Matthies D, Spillmann HH (2000) Reduced fecundity and offspring performance in small populations of the declining grassland plants Primula veris and Gentiana lutea. J Ecol 88:17–30

    Article  Google Scholar 

  • Kull T (1988) Identification of clones in Cypripedium calceolus (Orchidaceae). Proc Acad Sci Est SSR Biol 37:195–198 + 1 pl

    Google Scholar 

  • Kull T (1998) Fruit-set and recruitment in populations of Cypripedium calceolus L. in Estonia. Bot J Linn Soc 126:27–38

    Google Scholar 

  • Kull T (1999) Biological flora of the British Isles no. 208. List Br. Vasc. Pl. (1958) 623, 1. Cypripedium calceolus L. J Ecol 87:913–924

    Article  Google Scholar 

  • Kull T, Paaver T (1997) Patterns of aspartate amino-transferase variation in relation to population size, founder effect and phytogeographic history in Cypripedium calceolus. Proc Est Acad Sci Biol Ecol 46:4–11

    CAS  Google Scholar 

  • Lange J (1885) Mødet d. 23e Oktober 1884. Medd Bot Foren Kjøbenhavn 1:147–149

    Google Scholar 

  • Les DH, Reinartz JA, Esselman EJ (1991) Genetic consequences of rarity in Aster furcatus (Asteraceae), a threatened, self-incompatible plant. Evolution 45:1641–1650

    Article  Google Scholar 

  • Light MHS, MacConaill M (2002) Climatic influences on flowering and fruiting of Cypripedium parviflorum var. pubescens. In: Kindlmann P, Willems JH, Whigham DF (eds) Trends and fluctuations in terrestrial orchid populations. Backhuys Publishers, Leiden, pp 85–97

    Google Scholar 

  • Malmgren S (1993) Asymbiontisk fröförökning i stor skala av Anacamptis, Ophrys, Orchis och andra orkideer med runda rotknöler. Sven Bot Tidskr 87:221–234

    Google Scholar 

  • McGowen MH, Vaillancourt RE, Pilbeam DJ, Potts BM (2010) Sources of variation in self-incompatibility in the Australian forest tree, Eucalyptus globulus. Ann Bot 105:737–745

    Article  PubMed  Google Scholar 

  • Nicolé F, Brzosko E, Till-Bottraud I (2005) Population viability analysis of Cypripedium calceolus in a protected area: longevity, stability and persistence. J Ecol 93:716–726

    Article  Google Scholar 

  • Nilsson LA (1979) Anthecological studies on the lady’s slipper, Cypripedium calceolus (Orchidaceae). Bot Not 132:329–347

    Google Scholar 

  • Ramsay MM, Dixon KW (2003) Propagation science, recovery and translocation of terrestrial orchids. In: Dixon KW, Kell SP, Barrett RL, Cribb PJ (eds) Orchid conservation. Natural History Publications (Borneo), Kota Kinabalu, pp 259–288

    Google Scholar 

  • Ramsay MM, Stewart J (1998) Re-establishment of the lady’s slipper orchid (Cypripedium calceolus L.) in Britain. Bot J Linn Soc 126:173–181

    Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rasmussen HN, Whigham DF (1993) Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. Am J Bot 80:1374–1378

    Article  Google Scholar 

  • Seavey SR, Bawa KS (1986) Late-acting self-incompatibility in angiosperms. Bot Rev 52:195–219

    Article  Google Scholar 

  • Smithson A (2006) Pollinator limitation and inbreeding depression in orchid species with and without nectar rewards. New Phytol 169:419–430

    Article  PubMed  Google Scholar 

  • Sprunger S (2001) The cultivation of Cypripedium calceolus from seedlings. Orchid Rev 109:118–120

    Google Scholar 

  • Swofford DL (1998) PAUP* 4.0b: phylogenetic analysis using parsimony (and other methods). Sinauer, Sunderland

    Google Scholar 

  • Terschuren J (1999) Action plan for Cypripedium calceolus in Europe. Nature and environment no. 100. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Thomsen L, Ankersen H (1996) Fruesko (Cypripedium calceolus) er i reproduktionsbiologisk krise ved Buderupholm–men hvorfor? URT 20:35–39

    Google Scholar 

  • Torelli G (1989) Impollinazione del Cypripedium calceolus L. http://www.alexdepri.it/goto/orchids/orchidsfile/cypripcalceolus_imp1

  • Vandepitte K, Roldán-Ruiz I, Jacquemyn H, Honnay O (2010) Extremely low genotypic diversity and sexual reproduction in isolated populations of the self-incompatible lily-of-the-valley (Convallaria majalis) and the role of the local forest environment. Ann Bot 105:769–776

    Article  PubMed  CAS  Google Scholar 

  • Whitlock MC, Ingvarsson PK, Hatfield (2000) Local drift load and the heterosis of interconnected populations. Heredity 84:452–457

    Article  PubMed  Google Scholar 

  • Wind P (1997) Overvågning af danske orkidéer 1987–1995. Flora Fauna (Aarhus) 103:49–71

    Google Scholar 

  • Wind P (2000) Naturovervågning. Overvågning af orkideer 2000. Arbejdsrapport fra DMU nr. 163. Danmarks Miljøundersøgelser, Miljøministeriet, Kalø

    Google Scholar 

Download references

Acknowledgments

This project was supported financially by the Spar Nord Foundation and “Det Obelske Familiefond”, and public and private land owners kindly allowed us to work on their premises. The genetic study was in part funded by Natural England. We gratefully thank the Danish nature conservation authorities for readily issuing all necessary permits, Aage Pedersen and Kurt Æ. Pedersen for assistance in the field and Tiiu Kull for providing Estonian literature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Æ. Pedersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedersen, H.Æ., Rasmussen, H.N., Kahandawala, I.M. et al. Genetic diversity, compatibility patterns and seed quality in isolated populations of Cypripedium calceolus (Orchidaceae). Conserv Genet 13, 89–98 (2012). https://doi.org/10.1007/s10592-011-0267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0267-0

Keywords

Navigation