Skip to main content
Log in

A new method for the partition of allelic diversity within and between subpopulations

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

A method is proposed for the analysis of allelic diversity in the context of subdivided populations. The definition of an allelic distance between subpopulations allows for the partition of total allelic diversity into within- and between-subpopulation components, in a way analogous to the classical partition of gene diversity. A new definition of allelic differentiation, A ST , between subpopulations results from this partition, and is contrasted with the concept of allelic richness differentiation. The partition of allelic diversity makes it possible to establish the relative contribution of each subpopulation to within and between-subpopulation components of diversity with implications in priorisation for conservation. A comparison between this partition and that corresponding to allelic richness is illustrated with an example. Computer simulations are used to investigate the behaviour of the new statistic A ST in comparison with F ST for a finite island model under a range of mutation and migration rates. A ST has less dependence on migration rate than F ST for large values of migration rate, but the opposite occurs for low migration rates. In addition, the variance in the estimates of A ST is higher than that of F ST for low mutation rates, but the opposite for high mutation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Barker JSF (2001) Conservation and management of genetic diversity: a domestic animal perspective. Can J For Res 31:588–595

    Article  Google Scholar 

  • Bataillon TM, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417

    CAS  PubMed  Google Scholar 

  • Bennewitz J, Meuwissen THE (2005) Estimation of extinction probabilities of five german cattle breeds by population viability analysis. J Dairy Sci 88:2949–2961

    Article  CAS  PubMed  Google Scholar 

  • Caballero A, Toro MA (2002) Analysis of genetic diversity for the management of conserved subdivided populations. Conserv Genet 3:289–299

    Article  CAS  Google Scholar 

  • Caballero A, Rodríguez-Ramilo ST, Ávila V, Fernández J (2010) Management of genetic diversity of subdivided populations in conservation programmes. Conserv Genet 11:409–419

    Article  Google Scholar 

  • Comps B, Gömöry D, Letouzey J, Thiébaut B, Petit RJ (2001) Diverging trends between heterozygosity and allelic richness during postglacial colonization in the European beech. Genetics 157:389–397

    CAS  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Crow FJ, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New York

    Google Scholar 

  • Eding H, Meuwissen THE (2001) Marker-based estimates of between and within population kinships for the conservation of genetic diversity. J Anim Breed Genet 118:141–159

    Article  CAS  Google Scholar 

  • Eding H, Crooijmans PMA, Groenne MAM, Meuwissen THE (2002) Assessing the contribution of breeds to genetic diversity in conservation schemes. Genet Sel Evol 34:613–633

    Article  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Ewens WJ (1964) The maintenance of alleles by mutation. Genetics 50:891–898

    CAS  PubMed  Google Scholar 

  • Fabuel E, Barragán C, Silió L, Rodríguez MC, Toro MA (2004) Analysis of genetic diversity and conservation priorities in Iberian pigs based on microsatellite markers. Heredity 93:104–113

    Article  CAS  PubMed  Google Scholar 

  • Fernández J, Toro MA, Caballero A (2004) Managing individuals’ contributions to maximize the allelic diversity maintained in small, conserved populations. Conserv Biol 18:1–10

    Article  Google Scholar 

  • Fernández J, Toro MA, Caballero A (2008) Management of subdivided populations in conservation programs: development of a novel dynamic system. Genetics 179:683–692

    Article  PubMed  Google Scholar 

  • Foulley JL, Ollivier L (2006) Estimating allelic richness and its diversity. Liv Sci 101:150–158

    Article  Google Scholar 

  • Hill WG, Rasbash J (1986) Models of long term artificial selection in finite populations. Genet Res 48:41–50

    Article  CAS  PubMed  Google Scholar 

  • Hulbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • James JW (1970) The founder effect and response to artificial selection. Genet Res 16:241–250

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Kimura M Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Allendorf F, Cornuet JM, Sherwin W (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  • Notter DR (1999) The importance of genetic diversity in livestock populations of the future. J Anim Sci 77:61–69

    CAS  PubMed  Google Scholar 

  • Ollivier L, Foulley JL (2005) Aggregate diversity: new approach combining within- and between-breed genetic diversity. Liv Prod Sci 95:247–254

    Article  Google Scholar 

  • Ollivier L, Foulley JL (2009) Managing genetic diversity, fitness and adaptation of farm animal genetic resources. In: van der Werf J, Graser H-U, Frankham R, Gondro C (eds) Adaptation and fitness in animal populations—evolutionary and breeding perspectives on genetic resource management. Springer, Dordrecht, pp 201–227

    Google Scholar 

  • Persson H, Widén B, Andersson S, Svensson L (2004) Allozyme diversity and genetic structure of marginal and central populations of Corylus avellana L. (Betulaceae). Plant Syst Evol 244:157–179

    Article  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Piyasatian N, Kinghorn BP (2003) Balancing genetic diversity, genetic gain and population viability in conservation programmes. J Anim Breed Genet 120:137–149

    Article  Google Scholar 

  • Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779

    CAS  PubMed  Google Scholar 

  • Rodrigáñez J, Barragán C, Alves E, Cortázar C, Toro MA (2008) Genetic diversity and allelic richness in Spanish wild and domestic pig population estimated from microsatellite markers. Span J Agric Res 1:107–115

    Google Scholar 

  • Sanders HL (1968) Marine benthic diversity: a comparison study. Am Nat 102:243–282

    Article  Google Scholar 

  • Schoen DJ, Brown HD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627

    Article  CAS  PubMed  Google Scholar 

  • Simianer H (2005) Using expected allele number as objective function to design between and within breed conservation of farm animal biodiversity. J Anim Breed Genet 122:177–187

    Article  CAS  PubMed  Google Scholar 

  • Stefenon VM, Gailing O, Finkeldey R (2008) Genetic structure of plantations and the conservation of genetic resources of Brazilian pine (Araucaria augustifolia). For Ecol Manag 255:2718–2725

    Article  Google Scholar 

  • Tapio M, Tapio I, Grislis Z, Holm LE, Jeppsson S, Kantanen J, Miceikiene I, Olsaker I, Viinalass H, Eythorsdottir E (2005) Native breeds demonstrate high contributions to the molecular variation in northern European sheep. Mol Ecol 14:3951–3963

    Article  CAS  PubMed  Google Scholar 

  • Tapio I, Varv S, Bennewitz J, Maleviciute J, Fimland E, Grislis Z, Meuwissen THE, Miceikiene I, Olsaker I, Viinalass H, Vilkki J, Kantanen J (2006) Prioritization for conservation of northern European cattle breeds based on analysis of microsatellite data. Conserv Biol 20:1768–1779

    Article  CAS  PubMed  Google Scholar 

  • Toro MA, Caballero A (2005) Characterization and conservation of genetic diversity in subdivided populations. Phil Trans R Soc B 360:1367–1378

    Article  CAS  PubMed  Google Scholar 

  • Toro MA, Fernández J, Caballero A (2009) Molecular characterization of breeds and its use in conservation. Livest Sci 120:174–195

    Article  Google Scholar 

  • Tyler T (2002) Geographic structure of genetic variation in the widespread woodland grass Milium effusum L. A comparison between two regions with contrasting history and geomorphology. Genome 45:1248–1256

    Article  PubMed  Google Scholar 

  • Wang J (2004) Monitoring and managing genetic variation in group breeding populations without individual pedigrees. Conserv Genet 5:813–825

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Weitzman ML (1998) The Noah’s Ark problem. Econometrica 66:1279–1298

    Article  Google Scholar 

  • Wilson A, Arcese P, Keller LF, Pruett CL, Winker K, Patten MA, Chan Y (2009) The contribution to island populations to in situ genetic conservation. Conserv Genet 10:419–430

    Article  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. The theory of gene frequencies, vol 2. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

We thank L. Ollivier, J. L. Foulley, J. Fernández, M. A. Toro and three referees for useful comments on the manuscript. This work was funded by Ministerio de Ciencia y Tecnología and Fondos Feder (CGL2006-13445-C02/BOS and CGL2009-13278-C02), and Xunta de Galicia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando Caballero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caballero, A., Rodríguez-Ramilo, S.T. A new method for the partition of allelic diversity within and between subpopulations. Conserv Genet 11, 2219–2229 (2010). https://doi.org/10.1007/s10592-010-0107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0107-7

Keywords

Navigation