Skip to main content

Advertisement

Log in

Genetic erosion in a stenotopic heathland ground beetle (Coleoptera: Carabidae): a matter of habitat size?

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Two centuries ago large areas of north-west Europe were covered by coherent heathlands which hosted numerous specialized species. Changes in land use made heathlands fragmented and rare, consequently, they are in the focus of nature conservation efforts today. But how large should remaining heathland patches be in order to secure the survival of populations of specialized species? We investigated the genetic diversity at five allozyme loci of Poecilus lepidus, a flightless and stenotopic heathland ground beetle. 29 populations from differently sized heathland patches in north-west Germany were analyzed. Results show a weak but significant genetic differentiation and no evidence for isolation by distance or other patterns of spatial autocorrelation. Linear regression analysis revealed significant relationships between patch size, allelic richness, number of alleles and expected heterozygosity. These findings are explained by severe habitat fragmentation together with strong fluctuations in population size which have been reported for this species in the past. To conserve the vast majority of the species’ genetic diversity for a period of 100 years we suggest to maintain heathland patches of at least 50 ha in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Assmann T, Janssen J (1999) The effects of habitat changes on the endangered ground beetle Carabus nitens (Coleoptera: Carabidae). J Insect Conserv 3:107–116

    Article  Google Scholar 

  • Assmann T, Dormann W, Främbs H et al (2003) Rote Liste der in Niedersachsen und Bremen gefährdeten Sandlaufkäfer und Laufkäfer (Coleoptera: Cicindelidae et Carabidae) mit Gesamtartenverzeichnis. Inform d Naturschutz Niedersachs 23:70–95

    Google Scholar 

  • Ayala FJ, Powell JR, Tracy MO et al (1972) Enzyme variability in the Drosophila willistoni group IV: genetic variation in natural populations of Drosophila willistoni. Genetics 70:113–139

    CAS  PubMed  Google Scholar 

  • Balloux F (2001) EASYPOP (Version 1.7): a computer program for population genetics simulations. J Hered 92:301–302

    Article  CAS  PubMed  Google Scholar 

  • Brouat C, Sennedot F, Audiot P et al (2003) Fine-scale genetic structure of two carabid species with contrasted levels of habitat specialization. Mol Ecol 12:1731–1745

    Article  CAS  PubMed  Google Scholar 

  • Cornuet J-M, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Darvill B, Ellis JS, Lye GC et al (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol Ecol 15:601–611

    Article  CAS  PubMed  Google Scholar 

  • De Vries HH (1994) Size of habitat and presence of ground beetle species. In: Desender K, Dufrene M, Loreau M et al (eds) Carabid beetles: ecology and evolution. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 253–260

    Google Scholar 

  • De Vries H (1996a) Viability of ground beetle populations in fragmented heathlands. Dissertation, Landbouwuniversiteit, Wageningen

  • De Vries HH (1996b) Metapopulation structure of Pterostichus lepidus and Olisthopus rotundatus on heathland in the Netherlands: the results from transplant experiments. Ann Zool Fenn 33:77–84

    Google Scholar 

  • De Vries H (2000) Multiple paternity in ground beetles. Mitt dtsch Ges allg angew Ent 12:441–446

    Google Scholar 

  • De Vries HH, Kamping A, Van Delden W (1994) A preliminary study of genetic variation in isolated populations of the ground beetle Agonum ericeti (Coleoptera: Carabidae). Proc Sect Exp Appl Entomol Neth Entomol Soc (NEV) 5:109–114

    Google Scholar 

  • De Vries HH, Den Boer PJ, Van Dijk TS (1996) Ground beetle species in heathland fragments in relation to survival, dispersal, and habitat preference. Oecologia 107:332–342

    Article  Google Scholar 

  • Degen B, Petit R, Kremer A (2001) SGS – spatial genetic software: a computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. J Hered 92:447–448

    Article  CAS  PubMed  Google Scholar 

  • Den Boer PJ (1977) Dispersal power and survival – carabids in a cultivated countryside. Veenman & Zonen, Wageningen

    Google Scholar 

  • Den Boer PJ, Van Dijk TS (1995) Carabid beetles in a changing environment. Wageningen Agri Univ Papers 94:1–30

    Google Scholar 

  • Descimon H, Napolitano M (1993) Enzyme polymorphism, wing pattern variability, and geographical isolation in an endangered butterfly species. Biol Conserv 66:117–123

    Article  Google Scholar 

  • Desender K (1986) Distribution and ecology of carabid beetles in Belgium (Coleoptera, Carabidae). Part 2 Studiedocumenten (Bruxelles). 27:1–24

  • Desender K (2005) Theory versus reality: a review on the ecological and population genetic effects of forest fragmentation on wild organisms, with an emphasis on ground beetles. DIAS Rep 114:49–72

    Google Scholar 

  • Desender K, Backeljau T, Delahaye K et al (1998) Age and size of European saltmarshes and population genetic consequences for ground beetles. Oecologia 114:503–513

    Article  Google Scholar 

  • Dhuyvetter H, Gaublomme E, Desender K (2005a) Bottlenecks, drift and differentiation: the fragmented population structure of the saltmarsh beetle Pogonus chalceus. Genetica 124:167–177

    Article  CAS  PubMed  Google Scholar 

  • Dhuyvetter H, Gaublomme E, Verdyck P et al (2005b) Genetic differentiation among populations of the salt marsh beetle Pogonus littoralis (Coleoptera: Carabidae): a comparison between Atlantic and Mediterranean populations. J Hered 96:381–387

    Article  CAS  PubMed  Google Scholar 

  • Drees C, Matern A, Rasplus JY et al (2008) Microsatellites and allozymes as the genetic memory of habitat fragmentation and defragmentation in populations of the ground beetle Carabus auronitens (Col., Carabidae). J Biogeogr 35:1937–1949

    Article  Google Scholar 

  • Dupont YL, Nielsen BO (2006) Species composition, feeding specificity and larval trophic level of flower-visiting insects in fragmented versus continuous heathlands in Denmark. Biol Conserv 131:475–485

    Article  Google Scholar 

  • Eggers B, Matern A, Drees C et al. (2009) Value of semi-open corridors for simulaneously connecting open and wooded habitats: a case study using ground beetles. Conserv Biol doi: 10.1111/j.1523-1739.2009.01295.x

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree (Argania spinosa (L.) Skeels) endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  • Ellis JS, Knight ME, Darvill B et al (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  PubMed  Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1528

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Univ, Press, Cambridge

    Google Scholar 

  • Gilpin M (1991) The genetic effective size of a metapopulation. Biol J Linnean Soc 42:165–175

    Article  Google Scholar 

  • Gimingham CH (1981) Conservation: European heathlands. In: Specht RL (ed) Heathlands and related shrublands. Elsevier, Amsterdam, pp 249–259

    Google Scholar 

  • Gimingham CH, Chapman SB, Webb NR (1979) European heathlands. In: Specht RL (ed) Heathlands and related shrublands. Elsevier, Amsterdam, pp 365–413

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Updated from Goudet (1995): FSTAT: a computer program to calculate F-statistics. Heredity 86:485–486

    Google Scholar 

  • Habel JC, Zachos F, Finger A et al. (2009) Unprecedented long-term genetic monomorphism in an endangered relict butterfly species. Conserv Genet doi: 10.1007/s10592-10008-19744-10595

  • Hale ML, Lurz PWW, Shirley MDF et al (2001) Impact of landscape management on the genetic structure of red squirrel populations. Science 293:2246–2248

    Article  CAS  PubMed  Google Scholar 

  • Härdtle W, Niemeyer M, Niemeyer T et al (2006) Can management compensate for atmospheric nutrient deposition in heathland ecosystems? J Appl Ecol 53:759–769

    Article  Google Scholar 

  • Härdtle W, Assmann T, van Diggelen R (2008) Renaturierung von Heiden. In: Zerbe S, Wieglee G et al (eds) Renaturierung von Ökosystemen in Mitteleuropa. Elsevier, Heidelberg, pp 317–347

    Google Scholar 

  • Harper GL, Maclean N, Goulson D (2003) Microsatellite markers to assess the influence of population size, isolation and demographic change on the genetic structure of the UK butterfly Polyommatus bellargus. Mol Ecol 12:3349–3357

    Article  CAS  PubMed  Google Scholar 

  • Höglund J, Larsson JK, Jansman HAH et al (2007) Genetic variability in European black grouse (Tetrao tetrix). Conserv Genet 8:239–243

    Article  Google Scholar 

  • Honnay O, Jacquemyn H (2007) Susceptibility of common and rare plant species to the genetic consequences of habitat fragmentation. Conserv Biol 21:823–831

    Article  PubMed  Google Scholar 

  • Johansson M, Primmer CR, Merila J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983

    Article  CAS  PubMed  Google Scholar 

  • Keienburg T, Prüter J (2006) Naturschutzgebiet Lüneburger Heide: Erhaltung und Entwicklung einer alten Kulturlandschaft. Mitt NNA 17:1–65

    Google Scholar 

  • Keller I, Largiader CR (2003) Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc R Soc Lond, Ser B: Biol Sci 270:417–423

    Article  CAS  Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    CAS  PubMed  Google Scholar 

  • Knaepkens G, Bervoets L, Verheyen E et al (2004) Relationship between population size and genetic diversity in endangered populations of the European bullhead (Cottus gobio): implications for conservation. Biol Conserv 115:403–410

    Article  Google Scholar 

  • Knevel IC, Kamping A, De Vries HH et al (1996) Genetic variation in isolated populations of the ground beetle Pterostichus lepidus L. (Coleoptera, Carabidae). Proc Sect Exp Appl Entomol Neth Entomol Soc (NEV) 7:145–150

    Google Scholar 

  • Krauss J, Schmitt T, Seitz A et al (2004) Effects of habitat fragmentation on the genetic structure of the monophagous butterfly Polyommatus coridon along its northern range margin. Mol Ecol 13:311–320

    Article  PubMed  Google Scholar 

  • Larsson LC, Laikre L, Palm S et al (2007) Concordance of allozyme and microsatellite differentiation in a marine fish, but evidence of selection at a microsatellite locus. Mol Ecol 16:1135–1147

    Article  CAS  PubMed  Google Scholar 

  • Lindroth CH (1985/1986) The Carabidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomol Scand 15:1–497

    Google Scholar 

  • Louy D, Habel JC, Schmitt T et al (2007) Strongly diverging population genetic patterns of three skipper species: the role of habitat fragmentation and dispersal ability. Conserv Genet 8:671–681

    Article  Google Scholar 

  • Ludwig T, Storch I, Wübbenhorst J (2008) How the black grouse was lost: historic reconstruction of its status and distribution in Lower Saxony (Germany). J Ornithol 149:587–596

    Article  Google Scholar 

  • Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Luikart G, Sherwin WB, Steele BM et al (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7:963–974

    Article  CAS  PubMed  Google Scholar 

  • Manly BFJ (1985) The statistics of natural selection on animal populations. Chapman and Hall, London

    Google Scholar 

  • Marcos E, Calvo L, Luis-Calabuig E (2003) Effects of fertilization and cutting on the chemical composition of vegetation and soils of mountain heathlands in Spain. J Veg Sci 14:417–424

    Article  Google Scholar 

  • Matern A, Desender K, Drees C et al (2009) Genetic diversity and population structure of the endangered insect species Carabus variolosus in its western distribution range: implications for conservation. Conserv Genet 10:391–405

    Article  Google Scholar 

  • Mohamed A, Härdtle W, Jirjahn B et al (2006) Effects of prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecol 189:279–289

    Article  Google Scholar 

  • Montgomery ME, Woodworth LM, Nurthen RK et al (2000) Relationships between population size and loss of genetic diversity: comparisons of experimental results with theoretical predictions. Conserv Genet 1:33–43

    Article  CAS  Google Scholar 

  • Müller J, Schaltegger S (2004) Sozioökonomische Analyse des Heidemanagements in Nordwestdeutschland – Wirtschaftlichkeit, Kosten-Wirksamkeitsverhältnisse und Akzeptanz. NNA Ber 2(2004):183–197

    Google Scholar 

  • Murphy RW, Sites JW, Butch DG (1990) Proteins I: Isozyme Electrophoresis. In: Hills DM, Moritz C et al (eds) Molecular systematics. Sinauer Associates Sunderland, Massachusetts, pp 45–127

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–293

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  Google Scholar 

  • Niemeyer T, Niemeyer M, Mohamed A et al (2005) Impact of prescribed burning on the nutrient balance of heathlands with particular reference to nitrogen and phosphorus. Appl Veg Sci 8:183–192

    Article  Google Scholar 

  • Noël S, Ouellet M, Galois P et al (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606

    Article  Google Scholar 

  • Persigehl M, Lehmann S, Vermeulen HJW et al (2004) Kolonisation restituierter Sandrasen im Darmstädter Flugsandgebiet und im mittleren Emsland durch Laufkäfer. NNA Ber 1(2004):161–178

    Google Scholar 

  • Pimm SL, Gittleman JL, McCracken GF et al (1989) Plausible alternatives to bottlenecks to explain reduced genetic diversity. Trends Ecol Evol 4:176–178

    Article  Google Scholar 

  • Power SA, Barker CG, Allchin EA et al (2001) Habitat management: a tool to modify ecosystem impacts of nitrogen deposition? ScientificWorld J 1:714–721

    Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Reed DH (2005) Relationship between population size and fitness. Conserv Biol 19:563–568

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Sander A-C, Purtauf T, Holzhauer SIJ et al (2006) Landscape effects on the genetic structure of the ground beetle Poecilus versicolor STURM 1824. Biodivers Conserv 15:245–259

    Article  Google Scholar 

  • Saura A, Halkka O, Lokki J (1973) Enzyme gene heterozygosity in small island populations of Philaenus spumarius (L.) (Homoptera). Genetica 44:663–686

    Article  Google Scholar 

  • Schmitt T, Seitz A (2002) Influence of habitat fragmentation on the genetic structure of Polyommatus coridon (Lepidoptera: Lycaenidae): implications for conservation. Biol Conserv 107:291–297

    Article  Google Scholar 

  • Soulé M (1976) Allozyme variation: its determinants in space and time. In: Ayala FJ (ed) Molecular evolution. Sinauer, Sunderland, Massachusetts, pp 60–77

    Google Scholar 

  • Stangel PW, Lennartz MR, Smith MH (1992) Genetic variation and population structure of red-cockaded woodpeckers. Conserv Biol 6:283–292

    Article  Google Scholar 

  • The Council of the European Communities (2004) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Office for Official Publications of the European Communities

  • Turin H (2000) De Nederlandse Loopkevers – Verspreiding en oecologie. Nationaal Natuurhistorisch Museum Naturalis, Leiden

    Google Scholar 

  • Van Loon EE, Cleary DFR, Fauvelot C (2007) ARES: software to compare allelic richness between uneven samples. Mol Ecol Notes 7:579–582

    Article  Google Scholar 

  • Vermeulen HJW (1994) Corridor function of a road verge for dispersal of stenotopic heathland ground beetles (Carabidae). Biol Conserv 69:331–350

    Article  Google Scholar 

  • Voelker RA, Schaffer HE, Mukai T (1980) Spontaneous allozyme mutations in Drosophila melanogaster: rate of occurrence and nature of the mutants. Genetics 94:961–968

    CAS  PubMed  Google Scholar 

  • Vucetich JA, Waite TA (1999) Erosion of heterozygosity in fluctuating populations. Conserv Biol 13:860–868

    Article  Google Scholar 

  • Wauters LA, Hutchinson Y, Parkin DT et al (1994) The effects of habitat fragmentation on demography and on the loss of genetic variation in the red squirrel. Proc R Soc Lond, Ser B Biol Sci 255:107–111

    Article  CAS  Google Scholar 

  • Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:937–990

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • White TA, Searle JB (2007) Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Mol Ecol 16:2005–2016

    Article  CAS  PubMed  Google Scholar 

  • Wormanns S (2008) Projekt zum Schutz des Birkhuhns im Naturschutzgebiet Lüneburger Heide. Mitt NNA 19:7–11

    Google Scholar 

  • Yeh FC, Yang R, Boyle T (1999) POPGENE, Microsoft Windows-based freeware for population genetic analysis, http://www.ualberta.ca/~fyeh/index.htm

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the authorities of Weser-Ems and Lüneburg for the permits issued. M. P. was funded by the Federal Ministry of Education and Research (Inland sand ecosystems: dynamics and restoration, BMBF 01LN003). We thank E. E. van Loon for help with the ARES package and the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Drees.

Appendix

Appendix

See Tables 3, 4 and 5.

Table 3 Sample sites with their geographical location, habitat sizes and number of individuals analyzed
Table 4 Results of the population genetic analysis of P. lepidus in the Emsland region
Table 5 Results of the population genetic analysis of P. lepidus in the Lüneburg Heath

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drees, C., De Vries, H., Härdtle, W. et al. Genetic erosion in a stenotopic heathland ground beetle (Coleoptera: Carabidae): a matter of habitat size?. Conserv Genet 12, 105–117 (2011). https://doi.org/10.1007/s10592-009-9994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9994-x

Keywords

Navigation