Skip to main content

Advertisement

Log in

Genetic and morphometric analysis of sixteenth century Canis skull fragments: implications for historic eastern and gray wolf distribution in North America

Conservation Genetics Aims and scope Submit manuscript

Abstract

Resolving the taxonomy and historic ranges of species are essential to recovery plans for species at risk and conservation programs that aim to restore extirpated populations. In eastern North America, planning for wolf population restoration is complicated by the disputed historic distributions of two wolf species: the Old World-evolved gray wolf (Canis lupus) and the New World-evolved eastern wolf (C. lycaon). We used genetic and morphometric data from 4- to 500-year-old Canis samples excavated in London, Ontario, Canada to help clarify the historic range of these two wolf species in the eastern temperate forests of North America. We isolated DNA and sequenced the mitochondrial control region and found that none of the samples were of gray wolf origin. Two of the DNA sequences corresponded to those found in present day coyotes (C. latrans), but morphometric comparisons show an eastern wolf, not coyote, origin. The remaining two sequences matched ancient domestic dog haplotypes. These results suggest that the New World-evolved eastern wolf, not the gray wolf, occupied this region prior to the arrival of European settlers, although eastern-gray wolf hybrids cannot be ruled out. Furthermore, our data support the idea of a shared common ancestry between eastern wolves and western coyotes, and that the distribution of gray wolves at this time probably did not include the eastern temperate forests of North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong DP, Seddon PJ (2008) Directions in reintroduction biology. Trends Ecol Evol 23:20–25

    Article  PubMed  Google Scholar 

  • Björnerfeldt S, Webster MT, Vilà C (2006) Relaxation of selective constraint on dog mitochondrial DNA following domestication. Genome Res 16:990–994

    Article  PubMed  Google Scholar 

  • Chapron G, Andrén H, Liberg O (2008) Conserving top predators in ecosystems. Science 320:47

    Article  CAS  PubMed  Google Scholar 

  • Cooper A, Poinar HN (2000) Ancient DNA: do it right or not at all. Science 289(5482):1139

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) Beast: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2004) Introduction to conservation genetics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Gilbert MTP, Bandelt HJ, Hofreiter M, Barnes I (2005) Assessing ancient DNA studies. Trends Ecol Evol 20:541–544

    Article  PubMed  Google Scholar 

  • Grewal SK, Wilson PJ, Kung TK, Shami K, Theberge MT, Theberge JB, White BN (2004) A genetic assessment of the eastern wolf (Canis lycaon) in Algonquin Provincial Park. J Mammal 85:625–632

    Article  Google Scholar 

  • Griekspoor A, Groothuis T (2006) 4Peaks http://mekentosj.com/4peaks/

  • Hailer F, Leonard JA (2008) Hybridization among three native North American Canis species in a region of natural sympatry. PLoS ONE 3:e3333

    Article  PubMed  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW, Lee RN, Garrigan D (2002) Major histocompatibility complex variation in red wolves: evidence for common ancestry with coyotes and balancing selection. Mol Ecol 11:1905–1913

    Article  CAS  PubMed  Google Scholar 

  • Hilton HH (1978) Systematics and ecology of the eastern coyote. In: Bekoff M (ed) Coyotes: biology, behavior and management. Academic Press, New York, pp 209–228

    Google Scholar 

  • Hofreiter M, Jaenicke V, Serre D, von Haeseler A, Paabo S (2001) DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res 29:4793

    Article  CAS  PubMed  Google Scholar 

  • IUCN (World Conservation Union) (1998) Guidelines for reintroductions

  • Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McLnerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29–45

    Article  PubMed  Google Scholar 

  • Koblmüller S, Nord M, Wayne RK, Leonard JA (2009) Origin and status of the Great Lakes wolf. Mol Ecol 18:2313–2326. doi:10.1111/j.1365-294X.2009.04176.x

    Article  PubMed  Google Scholar 

  • Kolenosky GB, Standfield OJ (1975) Morphological and ecological variation among gray wolves (Canis lupus) of Ontario, Canada. In: Fox MW (ed) The wild canids. Van Nostrand Reinhold, New York, pp 62–72

    Google Scholar 

  • Kurtén B, Anderson E (1980) Pleistocene mammals of North America. Columbia University Press, New York

    Google Scholar 

  • Kyle CJ, Johnson AR, Patterson BR, Wilson PJ, Shami K, Grewal SK, White BN (2006) Genetic nature of eastern wolves: past, present and future. Conservat Genet 7:273–287

    Article  Google Scholar 

  • Kyle CJ, Johnson AR, Patterson BR, Wilson PJ, White BN (2008) The conspecific nature of eastern and red wolves: conservation and management implications. Conserv Genet 9:699–701

    Article  Google Scholar 

  • Leonard JA (2008) Ancient DNA applications for wildlife conservation. Mol Ecol 17:4186–4196

    Article  CAS  PubMed  Google Scholar 

  • Leonard JA, Wayne RK (2008) Native Great Lakes wolves were not restored. Biol Lett 4:95–98

    Article  PubMed  Google Scholar 

  • Leonard JA, Wayne RK (2009) Invited reply. Wishful thinking: imagining that the current Great Lakes wolf is the same entity that existed historically. Biol Lett 5:67–68

    Article  Google Scholar 

  • Leonard JA, Wayne RK, Wheeler J, Valadez R, Guillen S, Vilà C (2002) Ancient DNA evidence for old world origin of new world dogs. Science 298:1613–1616

    Article  CAS  PubMed  Google Scholar 

  • Mech LD (2009) Comment. Crying wolf: concluding that wolves were not restored. Biol Lett 5:65–66

    Article  PubMed  Google Scholar 

  • Moore GC, Parker GR (1992) Colonization by the eastern coyote. In: Boer AH (ed) Ecology and management of the eastern Coyote. Wildlife Research Unit, University of New Brunswick, Fredericton, pp 23–38

    Google Scholar 

  • Nowak RM (1979) North American quaternary Canis. University of Kansas Museum of Natural History Monograph No. 6

  • Nowak RM (1995) Another look at wolf taxonomy. In: Carbyn LN, Fritts SH, Seip DR (eds) Ecology and conservation of wolves in a changing world. Canadian Circumpolar Institute, University of Alberta, Edmonton, pp 375–398

    Google Scholar 

  • Nowak RM (2002) The original status of wolves in eastern North America. SE Nat 1:95–130

    Google Scholar 

  • Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu Rev Genet 38:645–679

    Article  PubMed  Google Scholar 

  • Paquet PC, Strittholt JR, Staus NL (1999) Wolf reintroduction feasibility in the Adirondack Park. Conservation Biology Institute, Corvallis

    Google Scholar 

  • Pearce RJ (1980) Lawson site (agHh-1) excavations, 1976–1979. Archaeological licence report submitted to the Ontario Ministry of Culture

  • Pilgrim KL, Boyd DK, Forbes SH (1998) Testing for wolf-coyote hybridization in the rocky mountains using mitochondrial DNA. J Wildl Manag 62:683–689

    Article  Google Scholar 

  • Rambaut A (2008) FigTree. http://tree.bio.ed.ac.uk/software/figtree/

  • Rambaut A, Drummond AJ (2007) Tracer v1.4. http://tree.bio.ed.ac.uk/software/tracer/

  • Sacks BN, Brown SK, Ernest HB (2004) Population structure of California coyotes corresponds to habitat-specific breaks and illuminates species history. Mol Ecol 13:1265–1275

    Article  CAS  PubMed  Google Scholar 

  • Schmitz OJ, Kolenosky GB (1985) Wolves and coyotes in Ontario: morphological relationships and origins. Can J Zool 63:1130–1137

    Article  Google Scholar 

  • Schwartz MK, Vucetich JA (2009) Molecules and beyond: assessing the distinctness of the Great Lakes wolf. Mol Ecol 18:2307–2309

    Article  PubMed  Google Scholar 

  • Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21:303–312

    Article  PubMed  Google Scholar 

  • Sergio F, Newton I, Marchesi l (2005) Top predators and biodiversity. Nature 436:192

    Article  CAS  PubMed  Google Scholar 

  • Smith DW, Peterson RO, Houston DB (2003) Yellowstone after wolves. Bioscience 53:330–340

    Article  Google Scholar 

  • Stiller M, Green RE, Ronan M, Simons JF, Du L, He W, Egholm M, Rothberg JM, Keates SG, Ovodov ND, Antipina EE, Baryshnikov GF, Kuzmin YV, Vasilevski AA, Wuenschell GE, Termini J, Hofreiter M, Jaenicke-Després V, Pääbo S (2006) Patterns of nucleotide misincorporations during enzymatic amplification and direct large-scale sequencing of ancient DNA. Proc Natl Acad Sci USA 103:13578–13584

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596

    Article  CAS  PubMed  Google Scholar 

  • Terborgh J, Lopez L, Nunez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  CAS  PubMed  Google Scholar 

  • Vilà C, Savolainen P, Maldonado JE, Amorim IR, Rice JE, Honeycutt RL, Crandall KA, Lundeberg J, Wayne RK (1997) Multiple and ancient origins of the domestic dog. Science 276:1687–1689

    Article  PubMed  Google Scholar 

  • Vonholdt BM, Stahler DR, Smith DW, Earl DA, Pollinger JP, Wayne RK (2008) The genealogy and genetic viability of reintroduced yellowstone grey wolves. Mol Ecol 17:252–274

    Article  PubMed  Google Scholar 

  • Wallach AD, Murray BR, O’Neill AJ (2009) Can threatened species survive where the top predator is absent? Biol Conserv 142:43–52

    Article  Google Scholar 

  • Warrick G (2000) The precontact iroquoian occupation of southern Ontario. J World PreHistory 14:415–466

    Article  Google Scholar 

  • Wheeldon T, White BN (2009) Genetic analysis of historic western Great Lakes region wolf samples reveals early Canis lupus/lycaon hybridization. Biol Letters 5:101–104

    Article  Google Scholar 

  • Willerslev E, Cooper A (2005) Ancient DNA. Proc Biol Sci 272:3

    Article  CAS  PubMed  Google Scholar 

  • Wilson PJ, Grewal S, Lawford ID, Heal JNM, Granacki AG, Penock D, Theberge JB, Theberge MT, Voigt DR, Waddell W, Chambers RE, Paquet PC, Goulet G, Cluff D, White BN (2000) DNA profiles of the eastern Canadian wolf and the red wolf provide evidence for a common evolutionary history independent of the gray wolf. Can J Zool 78:2156–2166

    Article  Google Scholar 

  • Wilson PJ, Grewal S, McFadden T, Chambers RC, White BN (2003) Mitochondrial DNA extracted from eastern North American wolves killed in the 1800s is not of gray wolf origin. Can J Zool 81:936–940

    Article  CAS  Google Scholar 

  • Wilson PJ, Grewal SK, Mallory FF, White BN (2009) Genetic characterization of hybrid wolves across Ontario. J Hered 100:S80–S89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thank you to Lisa Paulaharju at the Ontario Museum of Archaeology for locating catalogued samples, Kim Bennett, Brenna McLeod, Roxanne Gillett, and Kevin Middel for technical assistance, Brent Patterson at the Ontario Ministry of Natural Resources for supplying the skulls and comments on the manuscript, to Christine King at McMaster for providing the sequence data, all the technicians at the NRDPFC, and the members of the McMaster Ancient DNA Centre for helpful comments on the sequence data. This research was funded by a Natural Sciences Engineering Research Council of Canada (NSERC) Post-Graduate Doctoral Scholarship, an NSERC operating grant, and a Social Sciences and Humanities Research Council (SSHRC) grant 410-2004-0579.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Y. Rutledge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Sequence alignment of all four ancient samples (LIVa3, LIVa4, LIVa5, LIVa6), two Canis samples from GENBANK (DQ480511 C. latrans, DQ480508 C. lupus), cloned sequences of LIVa6 from both Trent University (TU) and McMaster University (MU) and their respective consensus sequences. For sample LIVa6, ds refers to the consensus sequence obtained from direct sequencing

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutledge, L.Y., Bos, K.I., Pearce, R.J. et al. Genetic and morphometric analysis of sixteenth century Canis skull fragments: implications for historic eastern and gray wolf distribution in North America. Conserv Genet 11, 1273–1281 (2010). https://doi.org/10.1007/s10592-009-9957-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-9957-2

Keywords

Navigation