Skip to main content
Log in

Applying QTL analysis to conservation genetics

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Both analytical and molecular tools currently exist that can be used to prolifically apply quantitative trait loci (QTL) analysis to the study of natural populations. In this communication, we review and exemplify the use of QTL mapping tools and genetic modeling for conservation geneticists. We simulate populations inspired by relevant cases that can be encountered in the field and analyze them using the recently developed flexible intercross analysis (FIA) method. We then reanalyze these results with the also recently developed natural and orthogonal interactions (NOIA) model of genetic effects. Next, we further exemplify the potential of genetic modeling for the interpretation of the output of QTL analyses by reviewing studies on hybrids between wild individuals and their domesticated relatives. Based on the results here presented we emphasize several points that are pertinent in conservation genetics including (i) the advantages of FIA as a powerful tool to be applied to line crosses in which the parental lines are not inbred, (ii) the importance of obtaining estimates of genetic effects that are adequate to address the research issue under consideration, (iii) the versatility of genetic modeling, particularly NOIA, to dissect complex genetic architectures and (iv) the possibility of using currently available methods to address non-equilibrium multiallelic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ESU:

Evolutionary significant unit

FIA:

Flexible intercross analysis

IBD:

Identity by descent

NOIA:

Natural and orthogonal interactions

QTL:

Quantitative trait loci

TS:

Transgressive segregation

VC:

Variance components

References

  • Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Castro JM, Carlborg Ö (2007) A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics 176:1151–1167

    Article  PubMed  Google Scholar 

  • Álvarez-Castro JM, Le Rouzic A, Carlborg Ö (2008) How to perform meaningful estimates of genetic effects. PLoS Genet 4(5):e1000062

    Article  PubMed  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  CAS  PubMed  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. In: Proceedings of 49th annual corn and sorghum research conference. American Seed Trade Association, Washington, DC, pp 250–266

  • Berthouly C, Leroy G, Nhu Van T, Hoang Thanh H, Bed’Hom B et al. (2009) Genetic analysis of local Vietnamese chickens provides evidence of gene flow from wild to domestic populations. BMC Genet 10. doi:10.1186/1471-2156-10-1

  • Carlborg Ö, Andersson L (2002) The use of randomization testing for detection of multiple epistatic QTL. Genet Res 79:175–184

    Article  PubMed  Google Scholar 

  • Carlborg Ö, Andersson L, Kinghorn B (2000) The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 155:2003–2010

    CAS  PubMed  Google Scholar 

  • Carlborg Ö, Kerje S, Shütz K, Jacobson L, Jensen P, Andersson L (2003) A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res 13:413–421

    Article  CAS  PubMed  Google Scholar 

  • Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139:1455–1461

    CAS  PubMed  Google Scholar 

  • de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Fernando RL, Grossman M (1989) Marked-assisted selection using best linear unbiased prediction. Genet Sel Evol 21:467–477

    Article  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:339–433

    Google Scholar 

  • Frankham R (1999) Quantitative genetics in conservation biology. Genet Res 74:237–244

    Article  CAS  PubMed  Google Scholar 

  • Goldgar DE (1990) Multipoint analysis of human quantitative genetic variation. Am J Hum Genet 47:957–967

    CAS  PubMed  Google Scholar 

  • Hansen TF, Wagner GP (2001) Modeling genetic architecture: a multilinear theory of gene interaction. Theor Popul Biol 59:61–86

    Article  CAS  PubMed  Google Scholar 

  • Kerje S, Carlborg Ö, Schutz K, Jacobsson L, Jensen P, Andersson L (2003) The two-fold difference in adult size between the Red Jungle fowl and White Leghorn Chickens is largely explained by a limited number of QTLs. Anim Genet 34:264–274

    Article  CAS  PubMed  Google Scholar 

  • Kruuk LEB, Slate J, Wilson AJ (2008) New answers for old questions: the evolutionary quantitative genetics of wild animal populations. Annu Rev Ecol Evol Syst 39:525–548

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    CAS  PubMed  Google Scholar 

  • Le Rouzic A, Álvarez-Castro JM (2008) Estimation of genetic effects and genotype–phenotype maps. Evol Bioinform 4:225–235

    CAS  Google Scholar 

  • Le Rouzic A, Álvarez-Castro JM, Carlborg Ö (2008) Dissection of the genetic architecture of body weight in chicken reveals the impact of epistasis on domestication traits. Genetics 179:1591–1599

    Article  PubMed  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–578

    Article  CAS  PubMed  Google Scholar 

  • McKay JK, Latta R (2002) Adaptive population divergence: markers, QTL and traits. TREE 17:285–292

    Google Scholar 

  • Meuwissen THE, Goddard ME (2000) Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155:421–430

    CAS  PubMed  Google Scholar 

  • Mitchell-Olds T (1995) The molecular basis of quantitative genetic variation in natural populations. Trends Ecol Evol 10:324–328

    Article  Google Scholar 

  • Mousseau TA, Ritland K, Heath DD (1998) A novel method for estimating heritability using molecular markers. Heredity 80:218–224

    Article  Google Scholar 

  • Pärn H, Jensen H, Ringsby TH, Sæther BE (2009) Sex specific fitness correlates of dispersal in a house-sparrow metapopulation. J Anim Ecol 78(6):1216–1225

    Article  PubMed  Google Scholar 

  • Pearson TA, Manolio TA (2008) How to interpret a genome-wide association study. J Am Med Assoc 299:1335–1344

    Article  CAS  Google Scholar 

  • Pemberton JM (2008) Wild pedigrees: the way forward. Proc R Soc Lond B 275:613–621

    Article  CAS  Google Scholar 

  • Perez-Enciso M, Varona L (2000) Quantitative trait loci mapping in F2 crosses between outbred lines. Genetics 155:391–405

    CAS  PubMed  Google Scholar 

  • Randi E (2008) Detecting hybridization between wild species and their domesticated relatives. Mol Ecol 12:285–293

    Article  Google Scholar 

  • Reiseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaption, and speciation. Heredity 83:362–372

    Google Scholar 

  • Reiseberg LH, Widmer A, Arntz AM, Burke J (2003) The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations. Philos Trans R Soc Lond B 358:1141–1147

    Article  Google Scholar 

  • Ritland K (2000) Marker-inferred relatedness as a tool for detecting heritability in nature. Mol Ecol 9:1195–1204

    Article  CAS  PubMed  Google Scholar 

  • Rönnegård L, Besnier F, Carlborg Ö (2008) An improved method for quantitative trait loci detection and identification of within-line segregation in F2 intercross designs. Genetics 178:2315–2326

    Article  PubMed  Google Scholar 

  • Sladek R, Rocheleau G, Rung J, Dina C, Shen L et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  CAS  PubMed  Google Scholar 

  • Slate J (2005) QTL mapping in natural populations: progress, caveats and future directions. Mol Ecol 14:363–379

    Article  CAS  PubMed  Google Scholar 

  • Slate J, Gratten J, Beraldi D, Stapley J, Hale M, Pemberton JM (2009) Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136:97–107

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Thomas SC (2005) The estimation of genetic relationships using molecular markers and their efficiency in estimating heritability in natural populations. Philos Trans R Soc Lond B 360:1457–1467

    Article  CAS  Google Scholar 

  • Wang JL (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979

    Article  PubMed  Google Scholar 

  • Wang T, Zeng ZB (2006) Models and partition of variance for quantitative trait loci with epistasis and linkage disequilibrium. BMC Genet 7:9

    Article  PubMed  Google Scholar 

  • Wang T, Fernando RL, Grossman M (1998) Genetic evaluation by best linear unbiased prediction using marker and trait information in a multibreed population. Genetics 148:507–515

    CAS  PubMed  Google Scholar 

  • Wilson A, Arcese P, Keller LF, Pruett CL, Winker K, Patten MA, Chan Y (2009) The contribution of island populations to in situ genetic conservation. Conserv Genet 10:419–430

    Article  Google Scholar 

  • Wolf DE, Takebayashi N, Reiseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053

    Article  Google Scholar 

  • Wu R, Ma CX, Casella G (2007) Statistical genetics of quantitative traits. Springer, New York

    Google Scholar 

  • Yang RC (2004) Epistasis of quantitative trait loci under different gene action models. Genetics 167:1493–1505

    Article  CAS  PubMed  Google Scholar 

  • Yang RC, Álvarez-Castro JM (2008) Functional and statistical genetic effects with multiple alleles. Curr Top Genet 3:49–62

    Google Scholar 

  • Zeng ZB, Wang T, Zou W (2005) Modeling quantitative trait Loci and interpretation of models. Genetics 169:1711–1725

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Örjan Carlborg, Ania Pino-Querido and Lars Rönnegård and two reviewers have provided valuable comments on the manuscript. JAC acknowledges funding by an “Isidro Parga Pondal” contract from the Xunta de Galicia. ALR was funded by the Marie Curie Fellowship EIF-220558.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Álvarez-Castro.

Additional information

François Besnier and Arnaud Le Rouzic have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Besnier, F., Le Rouzic, A. & Álvarez-Castro, J.M. Applying QTL analysis to conservation genetics. Conserv Genet 11, 399–408 (2010). https://doi.org/10.1007/s10592-009-0036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-009-0036-5

Keywords

Navigation