Skip to main content

Advertisement

Log in

The contribution of island populations to in situ genetic conservation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Genetic variation is often lower within island populations, however islands may also harbor divergent genetic variation. The likelihood that insular populations are genetically diverse or divergent should be influenced by island size and isolation. We tested this assumption by comparing patterns of genetic variation across all major island song sparrow populations along the Pacific North American coast. Allelic richness was moderately lowered even on islands which are close to large, potential sources. The most significant differences in allelic richness occurred on very small or highly remote islands. Gene diversity was significantly lower only on remote or very small islands. We found that island populations contribute to regional genetic variation through both the amount of genetic variation and the uniqueness of that variation. The partitioning of this contribution was associated with the size and isolation of the island populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494. doi:10.1073/pnas.0306582101

    Article  PubMed  CAS  Google Scholar 

  • Akst EP, Boersma PD, Fleischer RC (2002) A comparison of genetic diversity between the Galapagos Penguin and the Magellanic Penguin. Conserv Genet 3:375–383. doi:10.1023/A:1020555303124

    Article  CAS  Google Scholar 

  • Anderson DJ (1991) Apparent predator-limited distribution of Galapagos red-footed boobies Sula sula. Ibis 133:26–29. doi:10.1111/j.1474-919X.1991.tb04805.x

    Article  Google Scholar 

  • Bidlack A, Cook JA (2001) Reduced genetic variation in insular northern flying squirrels (Glaucomys sabrinus) along the North Pacific Coast. Anim Conserv 4:283–290

    Google Scholar 

  • Bloom AL (1983) Sea level and coastal morphology of the United States through the late Pleistocene glacial maximum. In: Porter SC (ed) Late quaternary environments of the United States, vol 1. University of Minnesota Press, Minneapolis, pp 215–229

    Google Scholar 

  • Boessenkool S, Taylor SS, Tepolt CK, Komdeur J, Jamieson IG (2007) Large mainland populations of South Island robins retain greater genetic diversity than offshore island refuges. Conserv Genet 8:705–714. doi:10.1007/s10592-006-9219-5

    Article  Google Scholar 

  • Bonin A, Nicole F, Pompanon F, Miaud C, Taberlet P (2007) Population adaptive index: a new method to help measure intraspecific genetic diversity and prioritize populations for conservation. Conserv Biol 21:697–708. doi:10.1111/j.1523-1739.2007.00685.x

    Article  PubMed  Google Scholar 

  • Brown AHD, Briggs JD (1991) Sampling strategies for genetic variation in ex situ collections of endangered plant species. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Burbidge AA (1999) Conservation values and management of Australian islands for non-volant mammal conservation. Aust Mammal 21:67–74

    Google Scholar 

  • Burg TM, Gaston AJ, Winker K, Friesen VL (2005) Rapid divergence and postglacial colonization in western North American Steller’s jays (Cyanocitta stelleri). Mol Ecol 14:3745–3755. doi:10.1111/j.1365-294X.2005.02710.x

    Article  PubMed  CAS  Google Scholar 

  • Chan Y, Arcese P (2002) Subspecific differentiation and conservation of song sparrows (Melospiza melodia) in the San Francisco Bay region inferred by microsatellite loci analysis. Auk 119:641–657. doi:10.1642/0004-8038(2002)119[0641:SDACOS]2.0.CO;2

    Article  Google Scholar 

  • Clegg SM, Degnan SM, Kikkawa J, Moritz C, Estoup A, Owens IPF (2002) Genetic consequences of sequential founder events by an island-colonizing bird. Proc Natl Acad Sci USA 99:8127–8132. doi:10.1073/pnas.102583399

    Article  PubMed  CAS  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295. doi:10.1016/S0169-5347(00)01876-0

    Article  PubMed  Google Scholar 

  • Crozier RH (1992) Genetic diversity and the agony of choice. Biol Conserv 61:11–15. doi:10.1016/0006-3207(92)91202-4

    Article  Google Scholar 

  • Delaney KS, Wayne RK (2005) Adaptive units for conservation: population distinction and historic extinctions in the Island Scrub-Jay. Conserv Biol 19:523–533. doi:10.1111/j.1523-1739.2005.00424.x

    Article  Google Scholar 

  • Eggert LS, Mundy NI, Woodruff DS (2004) Population structure of loggerhead shrikes in the California Channel Islands. Mol Ecol 13:2121–2133. doi:10.1111/j.1365-294X.2004.02218.x

    Article  PubMed  CAS  Google Scholar 

  • Eldridge MDB, King JM, Loupis AK, Spencer PBS, Taylor AC, Pope LC et al (1999) Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conserv Biol 13:531–541. doi:10.1046/j.1523-1739.1999.98115.x

    Article  Google Scholar 

  • Eldridge MDB, Kinnear JE, Zenger KR, McKenzie LM, Spencer PBS (2004) Genetic diversity in remnant mainland and “pristine” island populations of three endemic Australian macropodids (Marsupialia): Macropus eugenii, Lagorchestes hirsutus and Petrogale lateralis. Conserv Genet 5:325–338. doi:10.1023/B:COGE.0000031148.59923.aa

    Article  CAS  Google Scholar 

  • Frankel OH (1974) Genetic conservation—our evolutionary responsibility. Genetics 1:53–65

    Google Scholar 

  • Frankham R (1997) Do island populations have lower genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675. doi:10.1046/j.1523-1739.1998.96456.x

    Article  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press, New York

    Google Scholar 

  • Gilpin M (1991) The genetic effective size of a metapopulation. Biol J Linn Soc 42:165–175. doi:10.1111/j.1095-8312.1991.tb00558.x

    Article  Google Scholar 

  • Goudet J (2001) FSTAT a program to estimate and test gene diversities and fixation indices version 2.9.3. Available from http://www.unil.ch/izea/softwares/fstat.html

  • Guthrie DA (1992) A late Pleistocene avifauna from San Miguel Island, California. In: Campbell E (ed) Papers on avian paleontology. Sci Ser 36. Natural History Museum, Los Angeles, pp 319–327

  • Hanotte O, Zanon C, Pugh A, Greig C, Dixon A, Burke T (1994) Isolation and characterization of microsatellite loci in a passerine bird: the Reed bunting Emberiza schoeniclus. Mol Ecol 3:529–530. doi:10.1111/j.1365-294X.1994.tb00133.x

    Article  PubMed  CAS  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hille SM, Nesje M, Segelbacher G (2003) Genetic structure of kestrel populations and colonization of the Cape Verde archipelago. Mol Ecol 12:2145–2151. doi:10.1046/j.1365-294X.2003.01891.x

    Article  PubMed  CAS  Google Scholar 

  • Holm S (1979) A simple sequential rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Holsinger KE, Gottlieb LD (1991) Conservation of rare and endangered plants: principles and prospects. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Jeffery KJ, Keller LF, Arcese PA, Bruford MW (2001) The development of microsatellite loci in the Song sparrow, Melospiza melodia (Aves) and genotyping errors associated with good quality DNA. Mol Ecol Notes 1:11–13. doi:10.1046/j.1471-8278.2000.00005.x

    Article  CAS  Google Scholar 

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543. doi:10.1023/B:COGE.0000041021.91777.1a

    Article  CAS  Google Scholar 

  • Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189. doi:10.1111/j.1471-8286.2004.00845.x

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. Conserv Genet 7:991–995. doi:10.1007/s10592-006-9134-9

    Article  CAS  Google Scholar 

  • Keller LF, Jeffery KJ, Arcese P, Beaumont MA, Hochachka WM, Smith JNM et al (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc R Soc Lond B Biol Sci 268:1387–1394. doi:10.1098/rspb.2001.1607

    Article  CAS  Google Scholar 

  • Kretzmann MB, Capote N, Gautschi B, Godoy JA, Donazar JA, Negro JJ (2003) Genetically distinct island populations of the Egyptian vulture (Neophron percnopterus). Conserv Genet 6:697–706. doi:10.1023/B:COGE.0000006123.67128.86

    Article  Google Scholar 

  • Lande R, Barrowclough GF (1987) Effective population size, genetic variation, and their use in population management. In: Soulé ME (ed) Viable populations for conservation. Cambridge University Press, New York

    Google Scholar 

  • Le Corre V, Kremer A (2003) Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics 164:1205–1219

    PubMed  CAS  Google Scholar 

  • Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952. doi:10.1111/j.1365-2745.2006.01150.x

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760. doi:10.1046/j.1523-1739.1995.09040753.x

    Article  Google Scholar 

  • Lucid MK, Cook JA (2004) Phylogeography of Keen’s mouse (Peromyscus keeni) in a naturally fragmented landscape. J Mammal 85:1149–1159. doi:10.1644/BRB-218.1

    Article  Google Scholar 

  • Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:981–994. doi:10.1038/nrg1226

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Pfrender M, Spitze K, Lehman N, Hicks J, Allen D et al (1999) The quantitative and molecular genetic architecture of a subdivided species. Evolution Int J Org Evolution 53:100–110. doi:10.2307/2640923

    Google Scholar 

  • MacAvoy ES, McGibbon LM, Sainsbury JP, Lawrence H, Wilson CA, Daugherty CH et al (2007) Genetic variation in island populations of tuatara (Sphenodon spp.) inferred from microsatellite markers. Conserv Genet 8:305–318. doi:10.1007/s10592-006-9170-5

    Article  CAS  Google Scholar 

  • Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic conservation. In: Frankel OH, Hawkes JH (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge

    Google Scholar 

  • Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721. doi:10.1111/j.1365-294X.2004.02368.x

    Article  PubMed  CAS  Google Scholar 

  • Mills HR, Moro D, Spencer PBS (2004) Conservation significance of island versus mainland populations: a case study of dibblers (Parantechinus apicalis) in Western Australia. Anim Conserv 7:387–395. doi:10.1017/S1367943004001568

    Article  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254. doi:10.1080/10635150252899752

    Article  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323. doi:10.1073/pnas.70.12.3321

    Article  PubMed  CAS  Google Scholar 

  • Nichols RA, Bruford MW, Groombridge JJ (2001) Sustaining genetic variation in a small population: evidence from the Mauritius kestrel. Mol Ecol 10:593–602. doi:10.1046/j.1365-294x.2001.01204.x

    Article  PubMed  CAS  Google Scholar 

  • O’Grady JJ, Brook BW, Reed DH, Ballou JD, Tonkyn DW, Frankham R (2006) Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol Conserv 133:42–51. doi:10.1016/j.biocon.2006.05.016

    Article  Google Scholar 

  • O’Meally D, Colgan D (2005) Genetic ranking for biological conservation using information from multiple species. Biol Conserv 122:395–407. doi:10.1016/j.biocon.2004.08.008

    Article  Google Scholar 

  • Patten MA (2001) The roles of habitat and signalling in speciation: evidence from a contact zone of two song sparrow (Melospiza melodia) subspecies. Ph.D Dissertation, University of California-Riverside

  • Patten MA, Rotenberry JT, Zuk M (2004) Habitat selection, acoustic adaptation, and the evolution of reproductive isolation. Evolution Int J Org Evolution 58:2144–2155

    Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. doi:10.1046/j.1523-1739.1998.96489.x

    Article  Google Scholar 

  • Petren K (1998) Microsatellite primers from Geospiza fortis and cross-species amplification in Darwin’s finches. Mol Ecol 12:1782–1784

    Google Scholar 

  • Petren K, Grant PR, Grant BR, Keller LF (2005) Comparative landscape genetics and the adaptive radiation of Darwin’s finches: the role of peripheral isolation. Mol Ecol 14:2943–2957. doi:10.1111/j.1365-294X.2005.02632.x

    Article  PubMed  CAS  Google Scholar 

  • Pruett CL, Winker K (2005) Northwestern song sparrow populations show genetic effects of sequential colonization. Mol Ecol 14:1421–1434. doi:10.1111/j.1365-294X.2005.02493.x

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variance? A meta-analysis. Evolution Int J Org Evolution 55:1095–1103

    CAS  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi:10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • Sauer JR, Hines JE, Fallon J (2006) The North American breeding bird survey, results and analysis 1966–2006. Version 6.2.2006. USGS Patuxent Wildlife Research Center, Laurel, MD, http://www.mbr-pwrc.usgs.gov/bbs/. Accessed 2 January 2008

  • Schoen DJ, Brown AHD (1991) Intraspecific variation in population gene diversity and effective population-Size correlates with the mating system in plants. Proc Natl Acad Sci USA 88:4494–4497. doi:10.1073/pnas.88.10.4494

    Article  PubMed  CAS  Google Scholar 

  • Seddon JM, Baverstock PR (1999) Variation on islands: major histocompatibility complex (Mhc) polymorphism in populations of the Australian bush rat. Mol Ecol 8:2071–2079. doi:10.1046/j.1365-294x.1999.00822.x

    Article  PubMed  CAS  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analysis. Can J Zool 7:82–90

    Article  Google Scholar 

  • Shuford WD, Gardali T (2008) California bird species of special concern: a ranked assessment of species, subspecies, and distinct populations of birds of immediate conservation concern in California. Studies of Western Birds No. 1. Western Field Ornithologists, Camarillo, California, and California Department of Fish and Game, Sacramento

  • Small MP, Stone KD, Cook JA (2003) American marten (Martes americana) in the Pacific Northwest: population differentiation across a landscape fragmented in time and space. Mol Ecol 12:89–103. doi:10.1046/j.1365-294X.2003.01720.x

    Article  PubMed  CAS  Google Scholar 

  • Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448. doi:10.1023/B:COGE.0000041030.76598.cd

    Article  Google Scholar 

  • Stilwell KB, Kaufman DS (1996) Late Wisconsin glacial history of the northern Alaska Peninsula, southwestern Alaska, USA. Arct Alp Res 28:475–487. doi:10.2307/1551858

    Article  Google Scholar 

  • Wayne RK, George SB, Gilbert D, Collins PW, Kovach SD, Girman D et al (1991) A morphological and genetic-study of the island fox, Urocyon littoralis. Evolution Int J Org Evolution 45:1849–1868. doi:10.2307/2409836

    Google Scholar 

  • White TA, Searle JB (2007) Genetic diversity and population size: island populations of the common shrew, Sorex araneus. Mol Ecol 16:2005–2016. doi:10.1111/j.1365-294X.2007.03296.x

    Article  PubMed  CAS  Google Scholar 

  • Wilson AG (2008) The role of insularity for the intraspecific differentiation of song sparrows. Ph.D Dissertation, University of British Columbia

  • Wilson AG, Arcese P (2008) Influential factors for natal dispersal in an avian island metapopulation. J Avian Biol 39. doi:10.1111/j.2008.0908-8857.04239.x

  • Zink RM, Dittmann DL (1993) Gene flow, refugia, and evolution of geographic variation in the song sparrow (Melospiza melodia). Evolution Int J Org Evolution 47:717–729. doi:10.2307/2410178

    Google Scholar 

Download references

Acknowledgments

We thank S. Wilson, T. Coonan, L. Laughrin, A. Marr, J.M.N Smith, C. Begus, C. Ritland, A. Miscampbell, H. Yeh, W. Easton, J. Hope, M. Sogge, P. Collins and G. Kruger. Site access was provided by the Tsawout and Tseycum Bands, A. and H. Brumbaum, T. and M. Boyle, Parks Canada, Canadian Wildlife Service, Nature Trust, Powell River Municipality, Sooke Municipal District, and the Nature Conservancy. Site access and additional logistical support was provided by the Channel Island National Park Service and the University of California, Santa Cruz Island Reserve. We gratefully acknowledge financial support from NSERC (PA and AW), University of California Genetic Resources Conservation Program (AW), American Ornithologists Union Bleitz Grant (AW) and the Friends of Ecological Reserves (AW). All work was conducted under permits of the UBC Animal Care Committee, IACUC, Environment Canada, US Fish and Wildlife, California Department of Fish and Game, Channel Island National Park Service and the University of California Natural Reserve System. This manuscript benefitted from the thorough comments made by three anonymous reviewers, D. Irwin, E. Taylor, S. Taylor and S. Wilson.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy Wilson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, A., Arcese, P., Keller, L.F. et al. The contribution of island populations to in situ genetic conservation. Conserv Genet 10, 419–430 (2009). https://doi.org/10.1007/s10592-008-9612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9612-3

Keywords

Navigation