Skip to main content

Advertisement

Log in

Genetic diversity of populations of Merodon aureus and M. cinereus species complexes (Diptera, Syrphidae): integrative taxonomy and implications for conservation priorities on the Balkan Peninsula

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The genetic structure of 10 populations of the Merodon aureus group from the Balkan Peninsula was examined through allozyme electrophoresis and mitochondrial DNA sequencing of the cytochrome c oxidase subunit I (COI). Six diagnosable cryptic taxa were identified within the morphologically defined species M. aureus Fabricius, 1805 and M. cinereus (Fabricius, 1794), with clear separation of the populations (((M. aureus A + M. aureus B) + cinereus complex) + M. aureus C). The parsimony analysis of COI sequence data of the aureuscinereus complex using Merodon avidus A species as an outgroup resulted in two main clades, (M. aureus A + M. aureus B) and ((M. aureus C + M. cinereus B + M. cinereus C) + M. cinereus A), which differed on average by 5.7%. The observed spatial distribution of the taxonomic diversity of the group suggested that these taxa originated from a common ancestral population in the Mediterranean. Identification of genetic uniqueness and genetic endemism emphasizes the importance of molecular markers and estimation of genetic diversity in recognition of conservation units. The primary goals of the conservation measures that we propose are the protection of phylogenetic lineages within the highly diverse M. aureus group taxa and conservation of the genetic variation through management of important areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Ayala FJ, Powell JR (1972) Allozymes as diagnostic characters of sibling species of Drosophila. Proc Natl Acad Sci USA 69(5):1094–1096

    Article  PubMed  CAS  Google Scholar 

  • Bolger DT, Alberts AC, Sauvajot RM et al (1997) Response of rodents to habitat fragmentation in costal southern California. Ecol Appl 7:552–563

    Article  Google Scholar 

  • Clary D, Wolstenholme D (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271

    Article  PubMed  CAS  Google Scholar 

  • Farris JS (1972) Estimating phylogenetic trees from distance matrices. Am Nat 106:645–668

    Article  Google Scholar 

  • Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–284

    Article  PubMed  CAS  Google Scholar 

  • Funk JD, Omland KE (2003) Species-level paraphyly and polyphyly: frequency, causes and consequences, with insights from animal mitochondrial DNA. Annu Rev Ecol Evol Syst 34:397–423

    Article  Google Scholar 

  • Goloboff P (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428

    Article  Google Scholar 

  • Hedrick PW, Lee RN, Hurt CR (2006) The endangered Sonoran topminnow: examination of species and ESUs using three mtDNA genes. Conserv Genet 7:483–492

    Article  CAS  Google Scholar 

  • Hoelzer GA (1997) Inferring phylogenies from mtDNA variation: mitochondrial-gene trees versus nuclear-gene trees revisited. Evolution 51:622–626

    Article  Google Scholar 

  • Levene H (1949) On a matching problem arising in genetics. Ann Math Stat 20:91–94

    Article  Google Scholar 

  • Lipscomb D, Platnick N, Wheeler Q (2003) The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol Evol 18:65–66

    Article  Google Scholar 

  • Ludoški J, Milankov V, Vujić A (2004) Low genetic differentiation among conspecific populations of Melanogaster nuda (Diptera, Syrphidae). Int J Dipterol Res 15:229–235

    Google Scholar 

  • Marcos-Garcia MªA, Vujić A, Mengual X (2007) Revision of Iberian species of the genus Merodon Meigen, 1803 (Diptera: Syrphidae). Eur J Entomol 104:531–572

    Google Scholar 

  • Mensel H, Jäger E, Weinert E (1965) Vergleichende chorologie der zentraleuropäischen flora I, text. Veb Gustav Fisher Verlag, Jena

    Google Scholar 

  • Milankov V (2001) Evolutionary relationships of the ruficornis and aeneus groups of species of the genus Merodon Meigein, 1803 (Diptera: Syrphidae). Ph.D. Thesis, University of Novi Sad (in Serbian, English abstr.)

  • Milankov V, Ståhls G, Vujić A (in press) Molecular diversity of populations of the Merodon ruficornis group (Diptera, Syrphidae) on the Balkan Peninsula. J Zool Syst Evol Res

  • Milankov V, Stamenković J, Ludoški J, Ståhls G, Vujić A (2005) Diagnostic molecular markers and the genetic relationships among tree species of the Cheilosia canicularis group (Diptera: Syrphidae). Eur J Entomol 102:125–131

    CAS  Google Scholar 

  • Milankov V, Vujić A, Ludoški J (2001) Genetic divergence among cryptic taxa of Merodon avidus (Rossi, 1790) (Diptera: Syrphidae). Int J Dipterol Res 12:15–24

    Google Scholar 

  • Moritz C (1994) Defining “Evolutionary Significant Units” for conservation. Trends Ecol Evol 9:373–375

    Article  Google Scholar 

  • Moritz C, Cicero C (2004) DNA barcoding: promis and pitfalls. PloS Biol 2:1529–1531

    Article  CAS  Google Scholar 

  • Munstermann LE (1979) Isozymes of Aedes aegypti: phenotypes, linkage, and use of genetic analysis of sympatric population in East Africa. D. Phil. Thesis, University of Notre Dame, Indiana

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Neigel JE, Avise JC (1993) Application of a random walk model to geographic distributions of animal mitochondrial DNA variation. Genetics 135:1209–1220

    PubMed  CAS  Google Scholar 

  • Nixon KC (2002) WinClada version 1.00.08, Published by author, Ithaca, New York (http://www.cladistics.com)

  • Pasteur N, Pasteur G, Bonhomme F, Catalan J, Britton-Davidian J (1988) Practical isozyme genetics. Ellis Horwood Limited, Chichester

    Google Scholar 

  • Peck LV (1988) Family Syrphidae. In: Soos A (ed) Catalogue of Palaearctic Diptera, vol 8. Akademia Kiado, Budapest, pp 11–230

    Google Scholar 

  • Prager EM, Wilson AC (1976) Congruency of phylogenies derived from different proteins. J Mol Evol 9:45–57

    Article  PubMed  CAS  Google Scholar 

  • Rojo S, Ståhls G, Pérez-Bañón C, Marcos-García MA (2006) Larval morphology and taxonomic implications based on mitochondrial DNA sequences of West Palaearctic tibialis-group species of subgenus Pandasyopthalmus (Diptera: Syrphidae: Paragus). Eur J Entomol 103:443–458

    CAS  Google Scholar 

  • Roteray G (1993) Colour guide to heverfly larvae (Diptera: Syrphidae). Dipt Digest 9:1–156

    Google Scholar 

  • Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conserv Biol 20(4):1026–1033

    Article  PubMed  Google Scholar 

  • Rubinoff D, Holland BS (2005) Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol 54:952–961

    Article  PubMed  Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighing, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman and Company, San Francisco

    Google Scholar 

  • Speight MCD (2004) Species accounts of European Syrphidae (Diptera) 2004. In: Speight MCD, Castella E, Sarthou J.-P, Monteil C (eds) Syrph the Net, the database of European Syrphidae, vol 44. Syrph the Net publications, Dublin

    Google Scholar 

  • Swofford DL, Selander RB (1989) BIOSYS-1: a computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 1.7. Users manual. Illinois Natural History Survey, Champaign, pp 1–42

    Google Scholar 

  • Šimić S, Vujić A (1996) Hoverfly fauna (Diptera: Syrphidae) of the southern part of the mountain Stara Planina, Serbia. Acta ent serb 1:21–30

    Google Scholar 

  • Thompson FC (ed) (2005) Biosystematic Database of World Diptera. http://www.diptera.org/names, accessed on 19 January 2006

  • Thorpe JP (1982) The molecular clock hypothesis: Biochemical evaluation, genetic differentiation and systematics. Annu Rev Ecol Syst 13:139–168

    Article  CAS  Google Scholar 

  • Van de Wweyer G, Dils J (2002) Contribution to the knowledge of the Syrphidae from Greece (Diptera: Syrphidae). Phegea 27:69–77

    Google Scholar 

  • Weir BS (1996) Genetic data analysis II. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4. Variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jasmina Ludoski for her help with the technical matters. This work was supported in part by the Ministry of Science and Environmental Protection of Serbia, Grant Number 143006B, the Provincial Secretariat for Science and Technological Development (Maintenance of biodiversity – “Hot spots” on the Balkan and Iberian Peninsula) and the Carl Cedercreutz Foundation (Helsinki, Finland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vesna Milankov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milankov, V., Ståhls, G., Stamenković, J. et al. Genetic diversity of populations of Merodon aureus and M. cinereus species complexes (Diptera, Syrphidae): integrative taxonomy and implications for conservation priorities on the Balkan Peninsula. Conserv Genet 9, 1125–1137 (2008). https://doi.org/10.1007/s10592-007-9426-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-007-9426-8

Keywords

Navigation