Skip to main content
Log in

Reliability of noninvasive genetic census of otters compared to field censuses

  • Original paper
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Conservation and management actions are often highly dependent on accurate estimations of population sizes. However, these estimates are difficult to obtain for elusive and rare species. We compared two census methods for Eurasian otter: snow tracking and noninvasive genetic census based on the genotyping of faecal samples. With the noninvasive genetic census we detected the presence of almost twice as many otters as with snow tracking (23 and 10–15, respectively), and mark-recapture estimates based on the genetic census indicated that the real number of otters could be even higher. Our results indicate that snow tracking tends to underestimate the number of individuals and also that it is more susceptible to subjective assessment. We compared the strengths and weaknesses of the two methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aronson Å (1995) Metodbeskrivning för inventering av utter (Lutra lutra) vintertid på snö. Erfarenheter från undersökningar i delar av Norrbottens län 1992–1994. Naturskyddsföreningen

  • Bellemain E, Swenson J, Tallmon D, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol 19:150–161

    Article  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation of Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009

    Article  PubMed  Google Scholar 

  • Dallas JF, Bacon PJ, Carss DN, Conroy JWH, Green R, Jefferies DJ, Kruuk H, Marshall F, Piertney SB, Racey PA (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biol J Linn Soc Lond 68:73–86

    Article  Google Scholar 

  • Dallas JF, Carss DN, Marshall F, Koepfli KP, Kruuk H, Piertney SB, Bacon PJ (2000) Sex identification of the Eurasian otter Lutra lutra by PCR typing of spraints. Conserv Genet 1:181–183

    Article  CAS  Google Scholar 

  • Dallas JF, Coxon KE, Sykes T, Chanin PR, Marshall F, Carss DN, Bacon PJ, Piertney SB, Racey PA (2003) Similar estimates of population genetic composition and sex ratio derived from carcasses and faeces of Eurasian otter Lutra lutra. Mol Ecol 12:275–282

    Article  PubMed  CAS  Google Scholar 

  • Dallas JF, Piertney SB (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 7:1248–1251

    PubMed  CAS  Google Scholar 

  • Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12:1389–1402

    Article  PubMed  CAS  Google Scholar 

  • Ernest HB, Penedo MCT, May BP, Syvanen M, Boyce WM (2000) Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA. Mol Ecol 9:433–441

    Article  PubMed  CAS  Google Scholar 

  • Farrell LE, Roman J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Flagstad Ø, Hedmark E, Landa A, Brøseth H, Persson J, Andersen R, Segerström P, Ellegren H (2004) Colonization history and noninvasive monitoring of a reestablished wolverine population. Conserv Biol 18:676–688

    Article  Google Scholar 

  • Frantz AC, Schaul M, Pope LC, Fack F, Schley L, Muller CP, Roper TJ (2004) Estimating population size by genotyping remotely plucked hair: the Eurasian badger. J Appl Ecol 41:985–995

    Article  Google Scholar 

  • Frantzen MAJ, Silk JB, Ferguson JWH, Wayne RK, Kohn MH (1998) Empirical evaluation of preservation methods for faecal DNA. Mol Ecol 7:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Gagneux P, Boesch C, Woodruff DS (1997) Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Mol Ecol 6:861–868

    PubMed  CAS  Google Scholar 

  • Gese EM (2001) Monitoring of terrestrial carnivore populations. In: Gittleman JL, Funk SM, Macdonald D, Wayne RK (eds) Carnivore conservation (Conservation biology 5). Cambridge University Press, Cambridge, pp 372–396

    Google Scholar 

  • Hajkova P, Zemanova B, Bryja J, Hajek B, Roche K, Tkadlec E, Zima J (2006) Factors affecting auccess of PCR amplification of microsatellite loci from otter faeces. Mol Ecol Notes 6:559–562

    Article  CAS  Google Scholar 

  • Hammar G (2006) Utvecklingen av Upplands utterpopulation under 1995–2004. Länsstyrelsen i Uppsala län 2006:14, Uppsala

  • Hedmark E, Flagstad Ø, Segerström P, Persson J, Landa A, Ellegren H (2004) DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet 5:405–410

    Article  CAS  Google Scholar 

  • Hung CM, Li SH, Lee LL (2005) Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Anim Conserv 7:301–311

    Article  Google Scholar 

  • Jansman HAH, Chanin PRF, Dallas JF (2001) Monitoring otter populations by DNA typing of spraints. IUCN Otter Specialist Group Bull 18:12–19

    Google Scholar 

  • Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc Lond B Biol Sci 266:657–663

    Article  CAS  Google Scholar 

  • Kruuk H, Conroy JWH (1991) Mortality of otters (Lutra lutra) in Shetland. J Appl Ecol 28:83–94

    Article  Google Scholar 

  • Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, Randi E (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol Ecol 11:857–868

    Article  PubMed  CAS  Google Scholar 

  • Mason CF, Macdonald SM (1986) Otters—ecology and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Miller CR, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366

    PubMed  Google Scholar 

  • Miller CR, Joyce P, Waits LP (2005) A new method for estimating the size of small populations from genetic mark-recapture data. Mol Ecol 14:1991–2005

    Article  PubMed  CAS  Google Scholar 

  • Murphy MA, Waits LP, Kendall KC (2003) The influence of diet on faecal DNA amplification and sex identification in brown bears (Ursus arctos). Mol Ecol 12:2261–2265

    Article  PubMed  CAS  Google Scholar 

  • Park SDE (2001) Trypanotolerance in west African cattle and the population genetic effects of selection. Ph.D. thesis, University of Dublin

  • Philcox CK, Grogan AL, Macdonald DW (1999) Patterns of otter Lutra lutra road mortality in Britain. J Appl Ecol 36:748–762

    Article  Google Scholar 

  • Reed JZ, Tollit DJ, Thompson PM, Amos W (1997) Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Mol Ecol 6:225–234

    Article  PubMed  CAS  Google Scholar 

  • Reid DG, Bayer MB, Code TE, Mclean B (1987) A possible method for estimating river otter Lutra canadensis populations using snow tracks. Can Field Nat 101:576–580

    Google Scholar 

  • Ruiz-Olmo J, Delibes M, Zapata SC (1998) External morphometry, demography and mortality of the otter Lutra lutra (Linnoe, 1758) in the Iberian peninsula. Galemys 10:239–251

    Google Scholar 

  • Ruiz-Olmo J, Saavedra D, Jiménez J (2001) Testing the surveys and visual and track censuses of Eurasian otters (Lutra lutra). J Zool (London) 253:359–369

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Seddon JM (2005) Canid-specific primers for molecular sexing using tissue or non-invasive samples. Conserv Genet 6:147–149

    Article  Google Scholar 

  • Sidorovich VE, Jedrzejewska B, Jedrzejewski W (1996) Winter distribution and abundance of mustelids and beavers in the river valleys of Bialowieza Primeval Forest. Acta Theriologica 41:155–170

    Google Scholar 

  • Sidorovich VE, Lauzel GO (1992) Numbers of otters and approach to population estimation in Byelorussia. IUCN Otter Specialist Group Bull 7:13–16

    Google Scholar 

  • Solberg KH, Bellemain E, Drageset O-M, Taberlet P, Swenson JE (2006) An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biol Conserv 128:158–168

    Article  Google Scholar 

  • Sulkava R (1995) Inventering av utter vintertid. Plan för övervakning av utterstammen i Finland med hjälp av vinterspårningar. Metodik och inventeringsanvisningar. Finnish Environment Agency

  • Taberlet P, Camarra JJ, Griffin S, Uhrès E, Hanotte O, Waits LP, Dubois-Paganon C, Burke T, Bouvet J (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6:869–876

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucl Acids Res 24:3189–3194

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Luikart G (1999) Noninvasive genetic sampling and individual identification. Biol J Linn Soc Lond 68:41–55

    Article  Google Scholar 

  • Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Tree 14:323–327

    PubMed  Google Scholar 

  • Wandeler P, Smith S, Morin PA, Pettifor RA, Funk SM (2003) Patterns of nucler DNA degeneration over time—a case study in historic teeth samples. Mol Ecol 12:1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Wilson GJ, Frantz AC, Pope LC, Roper TJ, Burke TA, Cheeseman CL, Delahay RJ (2003) Estimation of badger abundance using faecal DNA typing. J Appl Ecol 40:658–666

    Article  Google Scholar 

Download references

Acknowledgements

We thank Reija Dufva and Fredrik Wickström for valuable technical assistance and Fredrik Widemo for planning and comments in the early phase of the study; the Department of Vertebrate Zoology (Peter Mortensen) and the Environmental Specimen Bank (Contaminant Research Group, Anna Roos) at the Swedish Museum of Natural History for providing tissue samples (museum accession numbers: NRM 935027, 935222, 945004, 945093, 945108, 945174, 955047, 955190, 965041, 965109, 965200, 975089, 975101, 975132, 985012, 995003, 995156, 995164, 995224, 995240); and two anonymous reviewers for constructive comments. This work was supported by the Swedish Research Council for Environmental, Agricultural Sciences and Spatial Planning (FORMAS) and Uppsala University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Arrendal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arrendal, J., Vilà, C. & Björklund, M. Reliability of noninvasive genetic census of otters compared to field censuses. Conserv Genet 8, 1097–1107 (2007). https://doi.org/10.1007/s10592-006-9266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-006-9266-y

Keywords

Navigation