Skip to main content
Log in

An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area

  • Original Paper
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Previously, sequencing of mitochondrial DNA (mtDNA) from non-invasively collected faecal material (scat) has been used to help manage hybridization in the wild red wolf (Canis rufus) population. This method is limited by the maternal inheritance of mtDNA and the inability to obtain individual identification. Here, we optimize the use of nuclear DNA microsatellite markers on red wolf scat DNA to distinguish between individuals and detect hybrids. We develop a data filtering method in which scat genotypes are compared to known blood genotypes to reduce the number of PCR amplifications needed. We apply our data filtering method and the more conservative maximum likelihood ratio method (MLR) of Miller et al. (2002 Genetics 160:357–366) to a scat dataset previously screened for hybrids by sequencing of mtDNA. Using seven microsatellite loci, we obtained genotypes for 105 scats, which were matched to 17 individuals. The PCR amplification success rate was 50% and genotyping error rates ranged from 6.6% to 52.1% per locus. Our data filtering method produced comparable results to the MLR method, and decreased the time and cost of analysis by 25%. Analysis of this dataset using our data filtering method verified that no hybrid individuals were present in the Alligator River National Wildlife Refuge, North Carolina in 2000. Our results demonstrate that nuclear DNA microsatellite analysis of red wolf scats provides an efficient and accurate approach to screen for new individuals and hybrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams JR, Kelly BT, Waits LP (2003) Using faecal DNA sampling and GIS to monitor hybridization between red wolves (Canis rufus) and coyotes (Canis latrans). Mol Ecol 12:2175–2186

    Article  PubMed  CAS  Google Scholar 

  • Banks SC, Piggott MP, Hansen BD, Robinson NA, Taylor AC (2002) Wombat coprogenetics: enumerating a common wombat population by microsatellite analysis of faecal DNA. Aust J Zool 50:193–204

    Article  Google Scholar 

  • Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: application to brown bear (Ursus arctos) faeces. Mol Ecol Notes 4:519–522

    Article  CAS  Google Scholar 

  • Bellemain E, Swenson JE, Tallmon D, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol 19:150–161

    Article  Google Scholar 

  • Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608

    Article  PubMed  CAS  Google Scholar 

  • Constable JL, Ashley MV, Goodall J, Pusey AE (2001) Noninvasive paternity assignment in Gombe chimpanzees. Mol Ecol 10:1279–1300

    Article  PubMed  CAS  Google Scholar 

  • Creel S, Spong G, Sands JL, Rotella J, Zeigle J, Joe L, Murphy KM, Smith D (2003) Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol Ecol 12:2003–2009

    Article  PubMed  Google Scholar 

  • Dalén L, Götherström A, Angerbjörn A (2004) Identifying species from pieces of faeces. Conserv Genet 5:109–111

    Article  Google Scholar 

  • Davison A, Birks JDS, Brookes RC, Braithwaite TC, Messenger JE (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool Lond 257:141–143

    Google Scholar 

  • De Barba M, Waits LP, Genovesi P, Randi E (2005) Monitoring the brown bear in the Italian alps through non-invasive genetic sampling. Abstract. International Bear Association Meeting, Italy

  • Ernest HB, Penedo MCT, May BP, Syvanen M, Boyce WM (2000) Molecular tracking of mountain lions in the Yosemite Valley region in California: genetic analysis using microsatellites and faecal DNA. Mol Ecol 9:433–441

    Article  PubMed  CAS  Google Scholar 

  • Eggert LS, Eggert JA, Woodruff DS (2003) Estimating population sizes for elusive animals: the forest elephants of Kakum National Park, Ghana. Mol Ecol 12:1389–1402

    Article  PubMed  CAS  Google Scholar 

  • Farrell LE, Roman J, Sunquist ME (2000) Dietary separation of sympatric carnivores identified by molecular analysis of scats. Mol Ecol 9:1583–1590

    Article  PubMed  CAS  Google Scholar 

  • Flagstad Ø, Hedmark E, Landa A, Broseth H, Persson J, Andersen R, Segerstrom P, Ellegren H (2004) Colonization history and noninvasive monitoring of a reestablished wolverine population. Conserv Biol 18:676–688

    Article  Google Scholar 

  • Frantz AC, Pope LC, Carpenter PJ, Roper TJ, Wilson GJ, Delahay RJ, Burke T (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661

    Article  PubMed  CAS  Google Scholar 

  • Frantzen MAJ, Silk JB, Ferguson JWH, Wayne RK, Kohn MH (1998) Empirical evaluation of preservation methods for faecal DNA. Mol Ecol 7:1423–1428

    Article  PubMed  CAS  Google Scholar 

  • Gagneux P, Boesch C, Woodruff DS (1997) Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Mol Ecol 6:861–868

    PubMed  CAS  Google Scholar 

  • Gerloff U, Schlötterer C, Rassmann K, Rambold I, Hohmann G, Fruth B, Tautz D (1995) Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living bonobos (Pan Paniscus). Mol Ecol 4:515–518

    CAS  Google Scholar 

  • Gerloff U, Hartung B, Fruth B, Hohmann G, Tautz D (1999) Intracommunity relationships, dispersal pattern and paternity success in a wild living community of Bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proc R Soc Lond B Biol Sci 266:1189–1195

    Article  CAS  Google Scholar 

  • Goossens B, Waits LP, Taberlet P (1998) Plucked hair samples as a source of DNA: reliability of dinucleotide microsatellite genotyping. Mol Ecol 7:1237–1241

    Article  PubMed  CAS  Google Scholar 

  • Goossens B, Chikhi L, Jalil MF, Ancrenaz M, Lackman-Ancrenaz I, Mohamed M, Andau P, Bruford MW (2005) Patterns of genetic diversity and migration in increasingly fragmented and declining orang-utan (Pongo pygmaeus) populations from Sabah, Malaysia. Mol Ecol 14:441–456

    Google Scholar 

  • Hansen MM, Jacobsen L (1999) Identification of mustelid species: otter (Lutra lutra), American mink (Mustela vison) and polecat (Mustela putorius), by analysis of DNA from faecal samples. J Zool Lond 247:177–181

    Google Scholar 

  • Hedmark E, Ellegren H (2005) A test of the multiplex pre-amplification approach in microsatellite genotyping of wolverine faecal DNA. Conserv Genet (in press)

  • Holmes NG, Dickend HF, Parker HL, Binns MM, Mellersh CS, Sampson J (1995) Eighteen canine microsatellites. Anim Genet 26:132–133

    Article  PubMed  CAS  Google Scholar 

  • Hung CM, Li SH, Lee LL (2004) Faecal DNA typing to determine the abundance and spatial organisation of otters (Lutra lutra) along two stream systems in Kinmen. Anim Conserv 7:301–311

    Google Scholar 

  • Iyengar A, Babu VN, Hedges S, Venkataraman AB, Maclean N, Morin PA (2005) Phylogeography, genetic structure, and diversity in the dhole (Cuon alpinus). Mol Ecol 14:2281–2297

    Article  PubMed  CAS  Google Scholar 

  • Kohn MH, York EC, Kamradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping faeces. Proc R Soc Lond B Biol Sci 266:657–663

    Article  CAS  Google Scholar 

  • Launhardt K, Epplen C, Epplen JT, Winkler P (1998) Amplification of microsatellites adapted from human systems in faecal DNA of wild Hanuman langurs (Presbytis entellus). Electrophoresis 19:1356–1361

    Article  PubMed  CAS  Google Scholar 

  • Longmire JL, Ambrose RE, Brown NC, Cade TJ, Maechtle T, Seegar WS, Ward FP, White CM (1991) Use of sex-linked minisatellite fragments to investigate genetic differentiation and migration of North American populations of the peregrine falcon (Falco peregrinus). In: Burke T, Dolf G, Jeffreys A, Wolff R (eds) DNA fingerprinting: approaches and applications. Birkhauser Press, Brazil, pp 217–229

    Google Scholar 

  • Lucchini V, Fabbri E, Marucco F, Ricci S, Boitani L, Randi E (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol Ecol 11:857–868

    Article  PubMed  CAS  Google Scholar 

  • Mech LD (1994) Buffer zones of territories of gray wolves as regions of intraspecific strife. Journal of Mammalogy 75:199–202

    Article  Google Scholar 

  • Mellersh CS, Langston AA, Acland GM, Fleming MA, Ray K, Wiegand NA, Francisco LV, Gibbs M, Aguirre GD, Ostrander EA (1997) A linkage map of the canine genome. Genomics 46:326–336

    Article  PubMed  CAS  Google Scholar 

  • Messier F (1985) Solitary living and extraterritorial movements of wolves in relation to social status and prey abundance. Can J Zool 63:239–245

    Article  Google Scholar 

  • Miller CR, Joyce P, Waits LP (2002) Assessing alleleic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366

    PubMed  Google Scholar 

  • Miller CR, Adams JR, Waits LP (2003) Pedigree-based assignment tests for reversing coyote (Canis latrans) introgression into the wild red wolf (Canis rufus) population. Mol Ecol 12:3287–3301

    Article  PubMed  CAS  Google Scholar 

  • Morin PA, Chambers KE, Boesch C, Vigilant L (2001) Quantitative polymerase chain reaction analysis of DNA from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees (Pan troglodytes verus). Mol Ecol 10:1835–1844

    Article  PubMed  CAS  Google Scholar 

  • Murphy MA, Waits LP, Kendall KC (2000) Quantitative evaluation of fecal drying methods for brown bear DNA analysis. Wildlife Soc Bull 28:951–957

    Google Scholar 

  • Murphy MA, Waits LP, Kendall KC, Wasser SK, Higbee JA, Bogden R (2002) Long-term preservation methods for brown bear (Ursus arctos) faecal DNA samples. Conserv Genet 3:435–440

    Article  CAS  Google Scholar 

  • Ostrander EA, Sprague GF, Rine J (1993) Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dogs. Genomics 16:207–213

    Article  PubMed  CAS  Google Scholar 

  • Ostrander EA, Mapa FA, Yee M, Rine J (1995) One hundred and one new simple sequence repeat-based markers for the canine genome. Mamm Genome 6:192–195

    Article  PubMed  CAS  Google Scholar 

  • Palomares F, Godoy JA, Piriz A, Oȁ9Brien SJ, Johnson WE (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182

    Article  PubMed  CAS  Google Scholar 

  • Paxinos E, Mcintosh C, Ralls K, Fleischer R (1997) A noninvasive method for distinguishing among canid species: amplification and enzyme restriction of DNA from dung. Mol Ecol 6:483–486

    Article  PubMed  CAS  Google Scholar 

  • Piggott MP (2004) Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA. Wildlife Res 31:485–493

    Article  CAS  Google Scholar 

  • Piggott MP, Bellemain E, Taberlet P, Taylor AC (2004) A multiplex pre-amplification method that significantly improves microsatellite amplification and error rates for faecal DNA in limiting conditions. Conserv Genet 5:417–420

    Article  CAS  Google Scholar 

  • Piggott MP, Banks SC, Stone N, Banffy C, Taylor AC (2006) Estimating population size of endangered brush-tailed rock-wallaby (Petrogale Penicillata) colonies using faecal DNA. Mol Ecol 15:81–91

    Article  PubMed  CAS  Google Scholar 

  • Prugh LR, Ritland CE, Arthur SM, Krebs CJ (2005) Monitoring coyote population dynamics by genotyping faeces. Mol Ecol 14:1585–1596

    Article  PubMed  CAS  Google Scholar 

  • Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucl Acids Res 24:3189–3194

    Article  PubMed  CAS  Google Scholar 

  • USFWS (1989) Red wolf recovery plan. USFWS, Atlanta

    Google Scholar 

  • Valiere N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379

    Article  CAS  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Buddy Fazio, team leader of the Red Wolf Recovery Program, and the Recovery Implementation Team for continued support of our research efforts. Craig Miller, the Waits lab group and three anonymous reviewers provided helpful comments on this manuscript. Members of the red wolf field crew, Arthur Beyer, Chris Lucash, Scott McLellan, Michael Morse, Leslie Schutte, and Kathy Whidbee, and program volunteers assisted in collecting the scats. Bruce Creef and the ARNWR maintenance facility staff provided help with the ATVs. The US Department of Defense and Gary Melton, Wayne Daniels (AFBR), Harry Mann (NBR) allowed access to the bombing ranges. Debra Montgomery assisted with statistical analyses. Andrea Bristol, Jonathan Teeters and Melanie Murphy provided assistance in the laboratory. Funding was provided by the United States Fish and Wildlife Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer R. Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, J.R., Waits, L.P. An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conserv Genet 8, 123–131 (2007). https://doi.org/10.1007/s10592-006-9154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-006-9154-5

Keywords

Navigation