Skip to main content

Advertisement

Log in

Chloroplast DNA variation and population structure in the widespread forest tree, Eucalyptus grandis

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Recognition of genetic structure of populations and the ability to identify vulnerable populations is useful for the formation of conservation management strategies for plants. Eucalyptus grandis is a tall forest tree that has a major area of occurrence in subtropical eastern Australia, with smaller populations located in the east coast tropics. Many widespread forest species exhibit population differentiation that corresponds to geographic regions. However, Eucalyptus grandis appears to be an exception based on isozyme and morphological data. This is intriguing given a large discontinuity between northern populations and those in the southern part of the species range. In this study, the distribution of a maternally inherited chloroplast locus was examined because it was more likely to reveal genetic structure due to the slower evolution of the chloroplast genome and limited dispersal of seed in eucalypts. As expected, the G ST for chloroplast DNA was higher than that for nuclear DNA but indicated low population differentiation for a forest tree species. Phylogeographic analysis indicated that the 15 populations grouped into three broad geographical regions; however, overall population structure was weak suggesting that the large geographical disjunction in the distribution of E. grandis may be relatively recent. A paradigm for conservation management of E. grandis based on chloroplast DNA haplotype distribution would take into account the low differentiation among populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston RD, Kleinig DA, Turner JD (1984) Forest Trees of Australia. CSIRO Publishing, Collingwood.

    Google Scholar 

  • Burgess IP (1988) Provenance trials of Eucalyptus grandis and E. saligna in Australia. Silvae Genet., 37, 221–227.

    Google Scholar 

  • Burgess IP, Bell JC (1983) Comparative morphology and allozyme frequencies of Eucalyptus grandis Hill ex Maiden and E. saligna Sm. Aust. For. Res., 13, 133–149.

    Google Scholar 

  • Byrne M, Macdonald B (2000) Phylogeography and conservation of three oil mallee taxa, Eucalyptus kochii ssp. kochii, ssp. plenissima and E. horistes. Aust. J. Bot., 48, 305–312.

    Article  Google Scholar 

  • Byrne M, Moran GF (1994) Population divergence in the chloroplast genome of Eucalyptus nitens. Heredity, 73, 18–28.

    Google Scholar 

  • Byrne M, Moran GF, Tibbits WN (1993) Restriction map and maternal inheritance of chloroplast DNA in Eucalyptus nitens. J. Hered., 84, 218–220.

    CAS  Google Scholar 

  • Chaix G, Gerber S, Razafimaharo V, Vigneron P, Verhaegen D, Hamon S (2003) Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor. Appl. Genet., 107, 705–712.

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: A computer program to estimate gene genealogies. Mol. Ecol., 9, 1657–1659.

    Article  PubMed  CAS  Google Scholar 

  • Coates DJ (2000) Defining conservation units in a rich and fragmented flora: implications for the management of genetic resources and evolutionary processes in South-west Australian plants. Aust. J. Bot., 48, 329–339.

    Article  Google Scholar 

  • Cremer KW (1977) Distance of seed dispersal in Eucalypts estimated from seed weights. Aust. For. Res., 7, 225–228.

    Google Scholar 

  • Demesure B, Comps B, Petit RJ (1996) Chloroplast DNA phylogeography of the common beech (Fagus sylvatica L.) in Europe. Evolution, 50, 2515–2520

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, Van Wyk G (1993) Eucalypt Domestication and Breeding. Clarendon Press, Oxford.

    Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity, 72, 250–259.

    Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package). Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Fineschi S, Taurchini D, Villani F, Vendramin GG (2000) Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries. Mol. Ecol., 9, 1495–1503

    Google Scholar 

  • Freeman JS, Jackson HD, Steane DA, McKinnon GE, Dutkowski GW, Potts BM, Vaillancourt RE (2001) Chloroplast DNA phylogeography of Eucalyptus globulus. Aust. J. Bot., 49, 585–596

    Google Scholar 

  • Goulding SE, Olmstead RG, Morden CW, Wolfe KH (1996) Ebb and flow of the chloroplast inverted repeat. Mol. Gen. Genet., 252, 195–206.

    Article  PubMed  CAS  Google Scholar 

  • Hampe A, Petit R (2005) Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett., 8, 461–467.

    Article  Google Scholar 

  • Harrington GN, Sanderson KD (1994) Recent contraction of wet sclerophyll forest in the wet tropics of Queensland due to invasion by rainforest. Pac. Cons. Biol., 1, 319–327.

    Google Scholar 

  • Hope GS (1994) Quaternary vegetation. In: History of the Australian vegetation: Cretaceous to Present (ed. Hill RS), pp. 368–389. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jackson HD, Steane DA, Potts BM, Vaillancourt RE (1999) Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae). Mol. Ecol., 8, 739–751.

    Article  Google Scholar 

  • King RA, Ferris C (1998) Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn. Mol. Ecol., 7, 1151–1161

    Google Scholar 

  • Ladiges PY (1997) Phylogenetic history and classification of eucalypts. In: Eucalypt Ecology: Individuals to Ecosystems (eds. Williams JE, Woinarski JCZ), pp. 16–29. Cambridge University Press, Cambridge.

    Google Scholar 

  • Law B, Mackowski C, Schoer L, Tweedie T (2000) Flowering phenology of myrtaceous trees and their relation to climatic, environmental and disturbance variables in northern New South Wales. Austral Ecol., 25, 160–178.

    Article  Google Scholar 

  • Lewis PO, Zaykin D (2002) Genetic Data Analysis: Software for the Analysis of Discrete Genetic Data, Free program available from the authors at http://www.lewis.eeb. uconn.edu/lewishome/software.html.

  • McCauley DE (1995) The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol. Evol., 10, 198–202.

    Article  Google Scholar 

  • McKinnon GE, Steane DA, Potts BM, Vaillancourt RE (1999) Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). Am. J. Bot., 86, 1038–1046.

    Article  PubMed  CAS  Google Scholar 

  • McKinnon GE, Vaillancourt RE, Tilyard PA, Potts BM (2001) Maternal inheritance of the chloroplast genome in Eucalyptus globulus and interspecific hybrids. Genome, 44, 831–835.

    Article  PubMed  CAS  Google Scholar 

  • Moran GF, Hopper SD (1987) Conservation of the genetic resources of rare and widespread eucalypts in remnant vegetation. In: Nature Conservation: The Role of Remnants of Native Vegetation (eds. Saunders DA, Arnold GW, Burbidge AA, Hopkins AJM), pp. 151–162. Surrey Beatty & Sons, Chipping Norton.

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. USA, 86, 2766–2770.

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R et al. (2003) Glacial refugia: Hotspots but not melting pots of genetic diversity. Science, 300, 1563–1565.

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organisation of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol. Ecol., 14, 689–701.

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, Kremer A, Wagner DB (1993) Finite island model for organelle and nuclear genes in plants. Heredity, 71, 630–641.

    Google Scholar 

  • Pons O, Petit RJ (1995) Estimation, variance and optimal sampling of gene diversity. I: Haploid locus. Theor. Appl. Genet., 90, 462–470.

    Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered vs. unordered alleles. Genetics, 144, 1237–1245.

    PubMed  CAS  Google Scholar 

  • Potts BM, Barbour RC, Hingston AB (2001) Genetic Pollution From Farm Forestry Using Eucalypt Species and Hybrids. Rural Industries Research and Development Corporation, Canberra.

    Google Scholar 

  • Potts BM, Wiltshire RJE (1997) Eucalypt genetics and genecology. In: Eucalypt ecology Individuals to Ecosystems. (eds. Williams JE, Woinarski JCZ), pp. 56–91. Cambridge University Press, Cambridge.

    Google Scholar 

  • Scanalytics (1998) Gene Profiler: 1-D Gel Analysis and Databasing. User’s Manual. Scanalytics Inc. Fairfax.

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: Problems and prospects. Mol. Ecol., 7, 465–474.

    Article  Google Scholar 

  • Schaal BA, Olsen KM (2000) Gene genealogies and population variation in plants. Proc. Natl. Acad. Sci. USA, 97, 7024–7029.

    Article  PubMed  CAS  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: A software for population genetic data analysis Ver 2.000. Genetics and Biometry Lab, Department of Anthropology, University of Geneva.

  • Soltis DE, Soltis PS, Milligan BG (1992) Intraspecific chloroplast DNA variation: Systematic and phylogenetic implications. In: Molecular Systematics of Plants (eds. Soltis PS, Soltis DE, Doyle JJ), pp. 117–150. Chapman and Hall, New York.

    Google Scholar 

  • Stanton R (1992) Eucalyptus Plantations in New South Wales. Forestry Commission of New South Wales, Sydney.

    Google Scholar 

  • Steane DA, Byrne M, Vaillancourt RE, Potts BM (1998) Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae). Aust. Syst. Bot., 11, 25–40.

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res., 22, 4673–4680.

    PubMed  CAS  Google Scholar 

  • Vogler AP, DeSalle R (1994) Diagnosing units of conservation management. Conserv. Biol., 8, 354–363.

    Article  Google Scholar 

  • Wardell-Johnson GW, Williams JE, Hill KD, Cumming R (1997) Evolutionary biogeography and contemporary distribution of eucalypts. In: Eucalypt Ecology: Individuals to Ecosystems (eds. Williams JE, Woinarski JCZ), pp. 92–128. Cambridge University Press, Cambridge.

    Google Scholar 

Download references

Acknowledgements

We thank Ian Johnson for assistance with collection of foliage material from the BSO in Wedding Bells State Forest and Evan Shield for helpful discussions. This research was funded by Forests New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan E. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, M.E., Shepherd, M., Henry, R.J. et al. Chloroplast DNA variation and population structure in the widespread forest tree, Eucalyptus grandis . Conserv Genet 7, 691–703 (2006). https://doi.org/10.1007/s10592-005-9104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-005-9104-7

Keywords

Navigation