Skip to main content

Advertisement

Log in

Delineating fine-scale genetic units in amphibians:Probing the primacy of ponds

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The population structure of pond-breeding amphibians is shaped by their distinct breeding foci, but it is unclear to what extent this is reflected in the fine-scale distribution of genetic diversity. We used microsatellite genotypes to investigate the genetic signatures of 24 populations of European newts, Triturus cristatus and T. marmoratus, inhabiting 21 ponds in a confined study area (7.5 × 3.5 km) in western France. Employing a Bayesian clustering approach based on individual genotypes that minimises departures from Hardy–Weinberg equilibrium and linkage disequilibrium, no evidence was found for within-pond substructuring. Subjecting all sampled ponds simultaneously to this procedure revealed a clear signal of partitioning, with the most likely number of clusters however below the actual number of ponds (seven in T. cristatus, three in T. marmoratus). A more hierarchical Bayesian approach, with pond as analysis unit, was achieved to separate ponds from genetically more meaningful units, and reduced the T. cristatus populations to 11 clusters, and the T. marmoratus populations to five clusters. We were unable to specify a minimum nearest-neighbour distance where ponds are separate units, probably due to both historical and current demographic processes. The implications for strategies to manage and conserve endangered amphibians in human-altered landscapes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • LW Andersen K Fog C Damgaard (2004) ArticleTitleHabitat fragmentation causes bottlenecks and inbreeding in the European treefrog (Hyla arborea) Proc. R. Soc. Lond. B 271 1293–1302

    Google Scholar 

  • JW Arntzen GP Wallis (1991) ArticleTitleRestricted gene flow in a moving hybrid zone of the newts Triturus cristatus and T. marmoratus in western France Evolution 45 805–826

    Google Scholar 

  • BW Bowen (1999) ArticleTitlePreserving genes, species, or ecosystems? Healing the fractured foundations of conservation policy Mol. Ecol 8 S5–S10 Occurrence Handle1:STN:280:DC%2BD3c7mvVWqsA%3D%3D Occurrence Handle10703547

    CAS  PubMed  Google Scholar 

  • DF Bradford AC Neale MS Nash DW Sada JR Jaeger (2003) ArticleTitleHabitat patch occupancy by toads (Bufo punctatus) in a naturally fragmented desert landscape Ecology 84 1012–1023

    Google Scholar 

  • V Castric F Bonney L Bernatchez (2001) ArticleTitleLandscape structure and hierarchical genetic diversity in the brook charr, Salvelinus fontinalis Evolution 55 1016–1028 Occurrence Handle1:STN:280:DC%2BD38%2Fhs1GjtA%3D%3D Occurrence Handle11430638

    CAS  PubMed  Google Scholar 

  • B Charlesworth D Charlesworth NB Barton (2003) ArticleTitleThe effects of genetic and geographic structure on neutral variation Ann. Rev. Ecol. Evol. Syst 34 99–124

    Google Scholar 

  • J Corander P Waldmann MJ Sillanpää (2003) ArticleTitleBayesian analysis of genetic differentiation between populations Genetics 163 367–374 Occurrence Handle1:CAS:528:DC%2BD3sXhvFChsrk%3D Occurrence Handle12586722

    CAS  PubMed  Google Scholar 

  • KA Crandall Bininda-Edmonds ORP GM Mace RK Wayne (2000) ArticleTitleConsidering evolutionary processes in conservation biology Trends Ecol. Evol 15 290–295 Occurrence Handle10.1016/S0169-5347(00)01876-0 Occurrence Handle10856956

    Article  PubMed  Google Scholar 

  • K Dawson K Belkhir (2001) ArticleTitleA Bayesian approach to the identification of panmictic populations and the assignment of individuals Genet. Res 78 59–77 Occurrence Handle1:STN:280:DC%2BD3MrgvVejsw%3D%3D Occurrence Handle11556138

    CAS  PubMed  Google Scholar 

  • D Falush M Stephens JK Pritchard (2003) ArticleTitleInference of population structure using multilocus genotype data: linked loci and correlated allele frequencies Genetics 164 1567–1587 Occurrence Handle1:CAS:528:DC%2BD3sXnvF2ntrk%3D Occurrence Handle12930761

    CAS  PubMed  Google Scholar 

  • OE Gaggiotti (2003) ArticleTitleGenetic threats to population persistence Ann. Zool. Fennici 40 155–168

    Google Scholar 

  • R Jehle JW Arntzen (2002) ArticleTitleReview: microsatellite markers in amphibian conservation genetics Herpetol. J 12 1–9

    Google Scholar 

  • R Jehle JW Arntzen T Burke AP Krupa W Hödl (2001) ArticleTitleThe annual number of breeding adults and the effective population size of syntopic newts (Triturus cristatus, T. marmoratus) Mol. Ecol 10 839–850 Occurrence Handle1:CAS:528:DC%2BD3MXjvVensb4%3D Occurrence Handle11348493

    CAS  PubMed  Google Scholar 

  • Jehle R, Wilson GA, Arntzen JW and Burke T (in press) Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T. marmoratus). J. Evol. Biol.

  • AP Krupa R Jehle DA Dawson LA Gentle M Gibbs JW Arntzen T Burke (2002) ArticleTitleMicrosatellite loci in the crested newt (Triturus cristatus), and their utility in other newt taxa Conserv. Genet 3 87–89 Occurrence Handle1:CAS:528:DC%2BD38XislChsrk%3D

    CAS  Google Scholar 

  • KP Lampert AS Rand UG Mueller MJ Ryan (2003) ArticleTitleFine-scale genetic pattern and evidence for sex-biased dispersal in the túngara frog, Physalaemus pustulosus Mol. Ecol 12 3325–3334 Occurrence Handle1:CAS:528:DC%2BD2cXks1yqsw%3D%3D Occurrence Handle14629349

    CAS  PubMed  Google Scholar 

  • S Manel MK Schwartz G Luikart P Taberlet (2003) ArticleTitleLandscape genetics: combining landscape ecology and population genetics Trends Ecol. Evol 18 189–197

    Google Scholar 

  • S Manel E Bellemain JE Swenson O Francois (2004) ArticleTitleAssumed and inferred spatial structure of populations: the Scandinavian brown bears revisited Mol. Ecol 13 1327–1331 Occurrence Handle1:CAS:528:DC%2BD2cXktl2rt78%3D Occurrence Handle15078468

    CAS  PubMed  Google Scholar 

  • DM Marsh Trenham PC (2001) ArticleTitleMetapopulation dynamics and amphibian conservation Conserv. Biol 15 40–49

    Google Scholar 

  • J Merilä F Söderman R O’Hara K Räsänen A Laurila (2004) ArticleTitleLocal adaptation and genetics of stress tolerance in the moor frog, Rana arvalis Conserv. Genet 5 513–527

    Google Scholar 

  • RA Newman T Squire (2001) ArticleTitleMicrosatellite variation and fine-scale population structure in the wood frog (Rana sylvatica) Mol. Ecol 10 1087–1101 Occurrence Handle1:CAS:528:DC%2BD3MXktFKitb4%3D Occurrence Handle11380868

    CAS  PubMed  Google Scholar 

  • JR Pannell DJ Obbart (2003) ArticleTitleProbing the primacy of the patch: what makes a metapopulation? J Ecol 91 485–488

    Google Scholar 

  • JW Petranka CK Smith A Floyd Scott (2004) ArticleTitleIdentifying the minimal demographic unit for monitoring pond-breeding amphibians Ecol. Appl 14 1065–1078

    Google Scholar 

  • JK Pritchard M Stephens P Donnelly (2000) ArticleTitleInference of population structure using multilocus genotype data Genetics 155 945–959 Occurrence Handle1:STN:280:DC%2BD3cvislKrtA%3D%3D Occurrence Handle10835412

    CAS  PubMed  Google Scholar 

  • C Ray (2001) ArticleTitleMaintaining genetic diversity despite local extinctions: effects of population scale Biol. Conserv 100 3–14

    Google Scholar 

  • RA Relyea (2002) ArticleTitleLocal population differences in phenotypic plasticity: predator-induced changes in wood frog tadpoles Ecol. Monogr 72 77–93

    Google Scholar 

  • NA Rosenberg T Burke K Elo MW Feldman PJ Freidlin MAM Groenen J Hillel A Mäki-Tanila M Tixier-Boichard A Vignal K Wimmers S Weigend (2001) ArticleTitleEmpirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds Genetics 159 699–713 Occurrence Handle1:CAS:528:DC%2BD3MXot1Srs7g%3D Occurrence Handle11606545

    CAS  PubMed  Google Scholar 

  • G Rowe TJC Beebee (2001) ArticleTitleFitness and microsatellite diversity estimates were not correlated in two outbred anuran populations Heredity 87 558–565 Occurrence Handle1:STN:280:DC%2BD387jt1GqtA%3D%3D Occurrence Handle11869346

    CAS  PubMed  Google Scholar 

  • G Rowe TJC Beebee T Burke (1999) ArticleTitleMicrosatellite heterozygosity, fitness and demography in natterjack toads Bufo calamita Anim. Conserv 2 85–92

    Google Scholar 

  • KT Scribner JW Arntzen N Cruddace RS Oldham T Burke (2001) ArticleTitleEnvironmental correlates of toad abundance and population genetic diversity Biol. Conserv 98 201–210

    Google Scholar 

  • DK Skelly (2004) ArticleTitleMicrogeographic countergradient variation in the wood frog, Rana sylvatica Evolution 58 160–165 Occurrence Handle15058728

    PubMed  Google Scholar 

  • DW Sugg RK Chesser FS Dobson JL Hoogland (1996) ArticleTitlePopulation genetics meets behavioral ecology Trends Ecol. Evol 11 338–342

    Google Scholar 

  • PC Trenham WD Koenig HB Shaffer (2001) ArticleTitleSpatially autocorrelated demography and interpond dispersal in the salamander Ambystoma californiense Ecology 82 3519–3530

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Jehle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jehle, R., Burke, T. & Arntzen, J.W. Delineating fine-scale genetic units in amphibians:Probing the primacy of ponds. Conserv Genet 6, 227–234 (2005). https://doi.org/10.1007/s10592-004-7832-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-004-7832-8

Keywords

Navigation